• Barber, D. G., and J. M. Hanesiak, 2004: Meteorological forcing of sea ice concentrations in the southern Beaufort Sea over the period 1979 to 2000. J. Geophys. Res., 109 , C06014. doi:10.1029/2003JC002027.

    • Search Google Scholar
    • Export Citation
  • Colony, R., and R. S. Pritchard, 1975: Integration of elastic–plastic constitutive laws. AIDJEX Bulletin, No. 30, Arctic Ice Dynamics Joint Experiment, University of Washington, Seattle, WA, 55–80. [Available online at http://psc.apl.washington.edu/aidjex/files/AIDJEX-30.pdf].

    • Search Google Scholar
    • Export Citation
  • Connolley, W. M., J. M. Gregory, E. Hunke, and A. J. McLaren, 2004: On the consistent scaling of terms in the sea-ice dynamics equation. J. Phys. Oceanogr., 34 , 17761780.

    • Search Google Scholar
    • Export Citation
  • Coon, M. D., G. A. Maykut, R. S. Pritchard, and D. A. Rothrock, 1974: Modeling pack ice as an elastic–plastic material. AIDJEX Bulletin, No. 24, Arctic Ice Dynamics Joint Experiment, University of Washington, Seattle, WA, 1–105. [Available online at http://psc.apl.washington.edu/aidjex/files/AIDJEX-24.pdf].

    • Search Google Scholar
    • Export Citation
  • Divine, D. V., R. Korsnes, and A. P. Makshtas, 2004: Temporal and spatial variation of shore-fast ice in the Kara Sea. Cont. Shelf Res., 24 , 17171736.

    • Search Google Scholar
    • Export Citation
  • Divine, D. V., R. Korsnes, A. P. Makshtas, F. Godtliebsen, and H. Svendsen, 2005: Atmospheric-driven state transfer of shore-fast ice in the northeastern Kara Sea. J. Geophys. Res., 110 , C09013. doi:10.1029/2004JC002706.

    • Search Google Scholar
    • Export Citation
  • Dumas, J. A., G. M. Flato, and R. D. Brown, 2006: Future projections of landfast ice thickness and duration in the Canadian Arctic. J. Climate, 19 , 51755189.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Texts in Applied Mathematics Series, Vol. 32, Springer-Verlag, 482 pp.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., and R. D. Brown, 1996: Variability and climate sensitivity of landfast Arctic sea ice. J. Geophys. Res., 101 , (C10). 2576725777.

    • Search Google Scholar
    • Export Citation
  • Giles, A. B., R. A. Massom, and V. I. Lytle, 2008: Fast-ice distribution in East Antarctica during 1997 and 1999 determined using RADARSAT data. J. Geophys. Res., 113 , C02S14. doi:10.1029/2007JC004139.

    • Search Google Scholar
    • Export Citation
  • Goodier, J. N., and P. G. Hodge, 1958: Elasticity and Plasticity. Wiley, 152 pp.

  • Gray, J. M. N. T., and L. W. Morland, 1994: A two-dimensional model for the dynamics of sea ice. Philos. Trans. Roy. Soc., 347A , 219290.

    • Search Google Scholar
    • Export Citation
  • Heil, P., 2006: Atmospheric conditions and fast ice at Davis, East Antarctica: A case study. J. Geophys. Res., 111 , C05009. doi:10.1029/2005JC002904.

    • Search Google Scholar
    • Export Citation
  • Heil, P., I. Allison, and V. I. Lytle, 1996: Seasonal and interannual variations of the oceanic heat flux under a landfast Antarctic sea ice cover. J. Geophys. Res., 101 , (C11). 2574125752.

    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., 1977: A viscous sea ice law as a stochastic average of plasticity. J. Geophys. Res., 82 (27) 39323938.

  • Hibler, W. D., 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9 , 815846.

  • Hibler, W. D., 1980: Modeling a variable thickness sea ice cover. Mon. Wea. Rev., 108 , 19431973.

  • Holland, D. M., 2007: A 1-D elastic–plastic sea-ice model solved with an implicit Eulerian–Lagrangian method. Ocean Modell., 17 , 127.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., 2001: Viscous-plastic sea ice dynamics with the EVP model: Linearization issues. J. Comput. Phys., 170 , 1838.

  • Hunke, E. C., and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27 , 18491867.

  • Hunke, E. C., and W. H. Lipscomb, 2008: CICE: The Los Alamos Sea Ice Model, documentation and software, version 4.0. Tech. Rep. LA-CC-06-012, Los Alamos National Laboratory. [Available online at http://oceans11.lanl.gov/trac/CICE].

    • Search Google Scholar
    • Export Citation
  • König Beatty, C., 2007: Arctic landfast sea ice. Ph.D. thesis, New York University, 110 pp.

  • Lieser, J. L., 2004: A numerical model for short-term sea ice forecasting in the Arctic. Ph.D. thesis, Universität Bremen, 105 pp.

  • Lietaer, O., T. Fichefet, and V. Legat, 2008: The effects of resolving the Canadian Arctic Archipelago in a finite element sea ice model. Ocean Modell., 24 , 140152.

    • Search Google Scholar
    • Export Citation
  • Macdonald, R. W., E. C. Carmack, and D. W. Paton, 1999: Using the δ18O composition in landfast ice as a record of Arctic estuarine processes. Mar. Chem., 65 , 324.

    • Search Google Scholar
    • Export Citation
  • Mahoney, A., H. Eicken, A. G. Gaylord, and L. Shapiro, 2007a: Alaska landfast sea ice: Links with bathymetry and atmospheric circulation. J. Geophys. Res., 112 , C02001. doi:10.1029/2006JC003559.

    • Search Google Scholar
    • Export Citation
  • Mahoney, A., H. Eicken, and L. Shapiro, 2007b: How fast is landfast sea ice? A study of the attachment and detachment of nearshore ice at Barrow, Alaska. Cold Reg. Sci. Technol., 47 , 233255.

    • Search Google Scholar
    • Export Citation
  • Miller, P. A., S. W. Laxon, and D. L. Feltham, 2005: Improving the spatial distribution of modeled Arctic sea ice thickness. Geophys. Res. Lett., 32 , L18503. doi:10.1029/2005GL023622.

    • Search Google Scholar
    • Export Citation
  • Prinsenberg, S. J., A. V. der Baaren, G. A. Fowler, and I. K. Peterson, 1997: Pack ice stress and convergence measurements by satellite-tracked ice beacons. Proc. OCEANS ’97, Vol. 2, Halifax, NS, Canada, IEEE, 1283–1289.

    • Search Google Scholar
    • Export Citation
  • Pritchard, R. S., 1975: An elastic-plastic constitutive law for sea ice. J. Appl. Mech., 42E , 379384.

  • Pritchard, R. S., 2001: Long-term sea ice dynamics simulations using an elastic-plastic constitutive law. J. Geophys. Res., 106 , (C12). 3133331343.

    • Search Google Scholar
    • Export Citation
  • Thorndike, A. S., and R. Colony, 1982: Sea ice motion in response to geostrophic winds. J. Geophys. Res., 87 , (C8). 58455852.

  • Tremblay, L-B., and L. A. Mysak, 1997: Modeling sea ice as a granular material, including the dilatancy effect. J. Phys. Oceanogr., 27 , 23422360.

    • Search Google Scholar
    • Export Citation
  • Tremblay, L-B., and M. Hakakian, 2006: Estimating the sea ice compressive strength from satellite-derived sea ice drift and NCEP reanalysis data. J. Phys. Oceanogr., 36 , 21652172.

    • Search Google Scholar
    • Export Citation
  • Tynan, C. T., and D. P. DeMaster, 1997: Observations and predictions of Arctic climatic change: Potential effects on marine mammals. Arctic, 50 (4) 308322.

    • Search Google Scholar
    • Export Citation
  • Vancoppenolle, M., T. Fichefet, H. Goosse, S. Bouillon, C. König Beatty, and M. A. Morales Maqueda, 2008: LIM3, an advanced sea-ice model for climate simulation and operational oceanography. Mercator-Ocean Newsletter, No. 28, GODAE Project Office, Toulouse, France, 16–21.

    • Search Google Scholar
    • Export Citation
  • Volkov, V. A., O. M. Johannessen, V. E. Borodachev, G. N. Voinov, L. H. Pettersson, L. P. Bobylev, and A. V. Kouraev, 2002: Polar Seas Oceanography: An Integrated Case Study of the Kara Sea. Springer-Verlag, 500 pp.

    • Search Google Scholar
    • Export Citation
  • Wadhams, P., 1986: The seasonal ice zone. The Geophysics of Sea Ice, N. Untersteiner, Ed., Plenum Press, 826–835.

  • Zhang, J., and D. A. Rothrock, 2005: Effect of sea ice rheology in numerical investigations of climate. J. Geophys. Res., 110 , C08014. doi:10.1029/2004JC002599.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 301 177 0
PDF Downloads 173 124 0

Modeling Landfast Sea Ice by Adding Tensile Strength

View More View Less
  • 1 New York University, New York, New York
Restricted access

Abstract

Landfast ice is sea ice that forms and remains fixed along a coast, where it is either attached to the shore or held between shoals or grounded icebergs. The current generation of sea ice models is not capable of reproducing certain aspects of landfast ice behavior, for example the persistence of landfast sea ice under the effect of offshore winds. The authors develop a landfast sea ice model by adding tensile strength to the viscous–plastic as well as two versions of the elastic–viscous–plastic sea ice rheologies. One-dimensional implementations of these rheologies are used to explore the ability of coastal sea ice to resist offshore winds over extended times. While all modified rheologies are capable of maintaining landfast ice–like structures in the model, only the viscous–plastic rheology fulfills theoretical expectations. The elastic–viscous–plastic rheologies show initial elastic waves that weaken the ice and thus reduce its capacity of maintaining landfast ice. Further, special care has to be taken when implementing the most commonly used version of the elastic–viscous–plastic rheology because the standard set of parameters is not adequate for landfast sea ice modeling.

Corresponding author address: Christof König Beatty, Université Catholique de Louvain (ASTR), Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium. Email: christof.konigbeatty@uclouvain.be

Abstract

Landfast ice is sea ice that forms and remains fixed along a coast, where it is either attached to the shore or held between shoals or grounded icebergs. The current generation of sea ice models is not capable of reproducing certain aspects of landfast ice behavior, for example the persistence of landfast sea ice under the effect of offshore winds. The authors develop a landfast sea ice model by adding tensile strength to the viscous–plastic as well as two versions of the elastic–viscous–plastic sea ice rheologies. One-dimensional implementations of these rheologies are used to explore the ability of coastal sea ice to resist offshore winds over extended times. While all modified rheologies are capable of maintaining landfast ice–like structures in the model, only the viscous–plastic rheology fulfills theoretical expectations. The elastic–viscous–plastic rheologies show initial elastic waves that weaken the ice and thus reduce its capacity of maintaining landfast ice. Further, special care has to be taken when implementing the most commonly used version of the elastic–viscous–plastic rheology because the standard set of parameters is not adequate for landfast sea ice modeling.

Corresponding author address: Christof König Beatty, Université Catholique de Louvain (ASTR), Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium. Email: christof.konigbeatty@uclouvain.be

Save