• Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, 182 pp.

    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., S. Levitus, J. Antonov, and S-A. Malmberg, 1998: Great salinity anomalies in the North Atlantic. Prog. Oceanogr., 41 , 168.

    • Search Google Scholar
    • Export Citation
  • Blume, H-J., B. Kendall, and J. Fedors, 1978: Measurement of ocean temperature and salinity via microwave radiometry. Bound.-Layer Meteor., 13 , 295308.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and M. J. McPhaden, 1998: Upper ocean salinity balance in the western equatorial Pacific. J. Geophys. Res., 103 , 2756727587.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and M. J. McPhaden, 1999: Diurnal cycle of rainfall and surface salinity in the western Pacific warm pool. Geophys. Res. Lett., 26 , 34653468.

    • Search Google Scholar
    • Export Citation
  • DeCosmo, J., K. B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, and H. Chadwick, 1996: Air-sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results. J. Geophys. Res., 101 , (C5). 1200112016.

    • Search Google Scholar
    • Export Citation
  • Delcroix, T., M. McPhaden, A. Dessier, and Y. Gouriou, 2005: Time and space scales for sea surface salinity in the tropical oceans. Deep Sea. Res., 52 , 787813. doi:10.1016/j.dsr.2004.11.012.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., and I. S. Robinson, 1997: Observations of the oceanic thermal skin in the Atlantic Ocean. J. Geophys. Res., 102 , 1858518606.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., T. J. Nightingale, T. Sheasby, J. Turner, I. S. Robinson, and W. J. Emery, 1999: Implications of the oceanic thermal skin temperature deviation at high wind speed. Geophys. Res. Lett., 26 , 25052508.

    • Search Google Scholar
    • Export Citation
  • Eifler, W., and C. Donlon, 2001: Modeling the thermal surface signature of breaking waves. J. Geophys. Res., 106 , (C11). 2716327185.

  • Ewing, G., and E. D. McAlister, 1960: On the thermal boundary layers of the ocean. Science, 131 , 13741376.

  • Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101 , 12951308.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gordon, A. L., and C. F. Giulivi, 2008: Sea surface salinity trends over fifty years within the subtropical North Atlantic. Oceanography, 21 , 2129.

    • Search Google Scholar
    • Export Citation
  • Grassl, H., 1976: On the dependence of the measured cool skin of the ocean on wind stress and total heat flux. Meteorology, 10 , 465474.

    • Search Google Scholar
    • Export Citation
  • Hasse, L., 1963: On the cooling of the sea surface by evaporation and heat exchange. Tellus, 15 , 363366.

  • Hasse, L., 1971: The sea surface temperature deviation and the heat flow at the sea-air interface. Bound.-Layer Meteor., 1 , 368379.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 3855.

    • Search Google Scholar
    • Export Citation
  • Jessup, A. T., C. J. Zappa, M. R. Loewen, and V. Hesany, 1997: Infrared remote sensing of breaking waves. Nature, 385 , 5255.

  • Katsaros, K. B., 1969: Temperature and salinity of the sea surface with particular emphasis on effects of precipitation. Ph.D. thesis, University of Washington, 307 pp.

  • Katsaros, K. B., 1973: Supercooling at the surface of an arctic lead. J. Phys. Oceanogr., 3 , 482486.

  • Katsaros, K. B., 1976: Effects of precipitation on the eddy exchange in a wind driven sea. Dyn. Atmos. Oceans, 1 , 99126.

  • Katsaros, K. B., 1977: The surface temperature deviation at very low wind speeds: Is there a limit? Tellus, 29 , 229239.

  • Katsaros, K. B., 1978: Turbulent free convection in fresh and salt water: Some characteristics revealed by visualization. J. Phys. Oceanogr., 8 , 613626.

    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., 1980: The aqueous thermal boundary layer. Bound.-Layer Meteor., 18 , 107127.

  • Katsaros, K. B., and K. J. Buettner, 1969: Influence of rainfall on temperature and salinity of the ocean surface. J. Appl. Meteor., 8 , 1518.

    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., and J. A. Businger, 1973: Comments on the determination of the total heat flux from the sea with a two-wavelength radiometer system as developed by McAlister. J. Geophys. Res., 78 , 19641970.

    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., and W. T. Liu, 1974: Supercooling at a free salt water surface in the laboratory. J. Phys. Oceanogr., 4 , 654657.

  • Katsaros, K. B., and A. V. Soloviev, 2004: Reduced horizontal sea surface temperature gradients under conditions of clear sky and weak winds. Bound.-Layer Meteor., 112 , 381396.

    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., W. T. Liu, J. A. Businger, and J. E. Tillman, 1977: Heat transport and thermal structure in the interfacial boundary layer measured in an open tank of water in turbulent free convection. J. Fluid Mech., 83 , 311335.

    • Search Google Scholar
    • Export Citation
  • Kent, E., T. Forrester, and P. K. Taylor, 1996: A comparison of the oceanic skin effect parameterizations using ship-borne radiometer data. J. Geophys. Res., 101 , 1664916666.

    • Search Google Scholar
    • Export Citation
  • Klein, L. A., and C. T. Swift, 1977: An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans. Antennas Prop., 25 , 104111.

    • Search Google Scholar
    • Export Citation
  • Koblinsky, C. J., P. Hildebrand, D. LeVine, F. Pellerano, Y. Chao, W. Wilson, S. Yueh, and G. Lagerloef, 2003: Sea surface salinity from space: Science goals and measurement approach. Radio Sci., 38 , 8064. doi:10.1029/2001RS002584.

    • Search Google Scholar
    • Export Citation
  • Konda, M., N. Imasato, K. Nishi, and T. Toba, 1994: Measurement of the sea surface emissivity. J. Oceanogr., 50 , 1730.

  • Lagerloef, G., C. T. Swift, and D. M. Le Vine, 1995: Sea surface salinity: The next remote sensing challenge. Oceanography, 8 , 4450.

  • Lagerloef, G., and Coauthors, 2008: The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge. Oceanography, 21 , 6881.

    • Search Google Scholar
    • Export Citation
  • Le Vine, D. M., and S. Abraham, 2002: The effect of the ionosphere on remote sensing of sea surface salinity from space: Absorption and emission at L band. IEEE Trans. Geosci. Remote Sens., 40 , 771782.

    • Search Google Scholar
    • Export Citation
  • Le Vine, D. M., G. S. E. Lagerloef, F. R. Colomb, S. H. Yueh, and F. A. Pellerano, 2007: Aquarius: An instrument to monitor sea surface salinity from space. IEEE Trans. Geosci. Remote Sensing, 45 , 20402050.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., and J. A. Businger, 1975: Temperature profile in the molecular sublayer near the interface of a fluid in turbulent motion. Geophys. Res. Lett., 2 , 403404.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36 , 17221735.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 96 , 33433357.

  • Miller, J. R., 1976: The salinity effect in a mixed layer ocean model. J. Phys. Oceanogr., 6 , 2935.

  • Ostapoff, F., Y. Tarbeyev, and S. Worthem, 1973: Heat flux and precipitation estimates from oceanographic observations. Science, 180 , 960962.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1981: The temperature difference across the cool skin of the ocean. J. Geophys. Res., 86 , 1104411054.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1979: Observations of a rain-formed mixed layer. J. Phys. Oceanogr., 9 , 643649.

  • Riser, S. C., L. Ren, and A. Wong, 2008: Salinity in ARGO. Oceanography, 21 , 5667.

  • Robinson, I. S., N. C. Wells, and H. Charnock, 1984: The sea surface thermal boundary layer and its relevance to the measurement of sea surface temperature by airborne and spaceborne radiometers. Int. J. Remote Sens., 5 , 1945.

    • Search Google Scholar
    • Export Citation
  • Saunders, P., 1967: The temperature at the ocean-air interface. J. Atmos. Sci., 24 , 267273.

  • Schlüssel, P., W. J. Emery, H. Grassl, and T. Mammen, 1990: On the bulk-skin temperature difference and its impact on satellite remote sensing of the sea surface temperature. J. Geophys. Res., 95 , 1334113356.

    • Search Google Scholar
    • Export Citation
  • Schlüssel, P., A. V. Soloviev, and W. J. Emery, 1997: Cool and fresh water skin of the ocean during rainfall. Bound.-Layer Meteor., 82 , 437472.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1981: Form of the temperature-salinity relationship in the Central Water: Evidence for double-diffusive mixing. J. Phys. Oceanogr., 11 , 10151026.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 2008: Salinity and the global water cycle. Oceanography, 21 , 1219.

  • Schmitt, R. W., P. S. Bogden, and C. E. Dorman, 1989: Evaporation minus precipitation and density fluxes for the North Atlantic. J. Phys. Oceanogr., 10 , 12101221.

    • Search Google Scholar
    • Export Citation
  • Silvestrin, P., M. Berger, Y. H. Kerr, and J. Font, 2001: ESA’s second Earth Explorer Opportunity mission: The Soil Moisture and Ocean Salinity mission—SMOS. IEEE Geoscience and Remote Sensing Society Newsletter, No. 118, The Institute of Electrical and Electronics Engineers, Piscataway, NJ, 11–14.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., and N. V. Vershinsky, 1982: The vertical structure of the thin surface layer of the ocean under conditions of low wind speed. Deep-Sea Res., 29 , 14371449.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., and P. Schlüssel, 1994: Parameterization of the cool skin of the ocean and of the air–ocean gas transfer on the basis of modeling surface renewal. J. Phys. Oceanogr., 24 , 13391346.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., and R. Lukas, 1996: Observation of spatial variability of diurnal thermocline and rain-formed halocline in the western Pacific warm pool. J. Phys. Oceanogr., 26 , 25292538.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., and P. Schlüssel, 1996: Evolution of cool skin and direct air-sea gas transfer coefficient during daytime. Bound.-Layer Meteor., 77 , 4568.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., and R. Lukas, 2006: The Near-Surface Layer of the Ocean: Structure, Dynamics and Applications. Springer, 572 pp.

  • Swift, C. T., 1980: Passive microwave remote sensing. Bound.-Layer Meteor., 18 , 2554.

  • Swift, C. T., and R. E. McIntosh, 1983: Considerations for microwave remote sensing of ocean surface salinity. IEEE Trans. Geosci. Remote Sens., 21 , 480491.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1994: The role of hydrological processes in ocean-atmosphere interactions. Rev. Geophys., 32 , 427476.

  • Wick, G. A., W. J. Emery, L. H. Kantha, and P. Schlüssel, 1996: The behavior of the bulk–skin sea surface temperature difference under varying wind speed and heat flux. J. Phys. Oceanogr., 26 , 19691988.

    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., and M. C. Gregg, 1996: Surface layer response to weak winds, westerly bursts, and rain squalls in the western Pacific warm pool. J. Geophys. Res., 101 , (C1). 977997.

    • Search Google Scholar
    • Export Citation
  • Wilson, W., S. Yueh, S. Dinardo, S. Chazanoff, A. Kitiyakara, and F. Li, 2001: Passive-active L- and S-band (PALS) microwave sensor for ocean salinity and soil moisture measurements. IEEE Trans. Geosci. Remote Sens., 39 , 10391048.

    • Search Google Scholar
    • Export Citation
  • Woodcock, A. H., 1941: Surface cooling and streaming in shallow fresh and salt waters. J. Mar. Res., 4 , 153161.

  • Woodcock, A. H., and H. Stommel, 1947: Temperatures observed near the surface of a fresh water pond at night. J. Meteor., 4 , 102103.

  • Yu, L., 2007: Global variations in oceanic evaporation (1958–2005): The role of the changing wind speed. J. Climate, 20 , 53765390.

  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88 , 527539.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air–Sea Fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux Project Tech. Rep. OA-2008-01, 64 pp.

    • Search Google Scholar
    • Export Citation
  • Yueh, S. H., 2000: Estimates of Faraday rotation with passive microwave polarimetry for microwave remote sensing of Earth surfaces. IEEE Trans. Geosci. Remote Sens., 38 , 24342438.

    • Search Google Scholar
    • Export Citation
  • Yueh, S. H., R. West, W. J. Wilson, F. K. Li, E. G. Njoku, and Y. Rahmat-Samii, 2001: Error sources and feasibility for microwave remote sensing of ocean surface salinity. IEEE Trans. Geosci. Remote Sens., 39 , 10491060.

    • Search Google Scholar
    • Export Citation
  • Zappa, C. J., A. T. Jessup, and H. Yeh, 1998: Skin layer recovery of free-surface wakes: Relationship to surface renewal and dependence on heat flux and background turbulence. J. Geophys. Res., 103 , (C10). 2171121722.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109 , D19105. doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 374 211 0
PDF Downloads 278 164 0

On Sea Surface Salinity Skin Effect Induced by Evaporation and Implications for Remote Sensing of Ocean Salinity

View More View Less
  • 1 Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
Restricted access

Abstract

The existence of a cool and salty sea surface skin under evaporation was first proposed by Saunders in 1967, but few efforts have since been made to perceive the salt component of the skin layer. With two salinity missions scheduled to launch in the coming years, this study attempted to revisit the Saunders concept and to utilize presently available air–sea forcing datasets to analyze, understand, and interpret the effect of the salty skin and its implication for remote sensing of ocean salinity.

Similar to surface cooling, the skin salinification would occur primarily at low and midlatitudes in regions that are characterized by low winds or high evaporation. On average, the skin is saltier than the interior water by 0.05–0.15 psu and cooler by 0.2°–0.5°C. The cooler and saltier skin at the top is always statically unstable, and the tendency to overturn is controlled by cooling. Once the skin layer overturns, the time to reestablish the full increase of skin salinity was reported to be on the order of 15 min, which is approximately 90 times slower than that for skin temperature. Because the radiation received from a footprint is averaged over an area to give a single pixel value, the slow recovery by the salt diffusion process might cause a slight reduction in area-averaged skin salinity and thus obscure the salty skin effect on radiometer retrievals. In the presence of many geophysical error sources in remote sensing of ocean salinity, the salt enrichment at the surface skin does not appear to be a concern.

Corresponding author address: Dr. Lisan Yu, Department of Physical Oceanography, MS#21, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: lyu@whoi.edu

Abstract

The existence of a cool and salty sea surface skin under evaporation was first proposed by Saunders in 1967, but few efforts have since been made to perceive the salt component of the skin layer. With two salinity missions scheduled to launch in the coming years, this study attempted to revisit the Saunders concept and to utilize presently available air–sea forcing datasets to analyze, understand, and interpret the effect of the salty skin and its implication for remote sensing of ocean salinity.

Similar to surface cooling, the skin salinification would occur primarily at low and midlatitudes in regions that are characterized by low winds or high evaporation. On average, the skin is saltier than the interior water by 0.05–0.15 psu and cooler by 0.2°–0.5°C. The cooler and saltier skin at the top is always statically unstable, and the tendency to overturn is controlled by cooling. Once the skin layer overturns, the time to reestablish the full increase of skin salinity was reported to be on the order of 15 min, which is approximately 90 times slower than that for skin temperature. Because the radiation received from a footprint is averaged over an area to give a single pixel value, the slow recovery by the salt diffusion process might cause a slight reduction in area-averaged skin salinity and thus obscure the salty skin effect on radiometer retrievals. In the presence of many geophysical error sources in remote sensing of ocean salinity, the salt enrichment at the surface skin does not appear to be a concern.

Corresponding author address: Dr. Lisan Yu, Department of Physical Oceanography, MS#21, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: lyu@whoi.edu

Save