• Andrews, D., J. Holton, and C. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysical Series, Vol. 40, Academic Press, 489 pp.

    • Search Google Scholar
    • Export Citation
  • Boss, E., and L. Thompson, 1999: Lagrangian and tracer evolution in the vicinity of an unstable jet. J. Phys. Oceanogr., 29 , 288304.

  • Bower, A. S., 1991: A simple kinematic mechanism for mixing fluid parcels across a meandering jet. J. Phys. Oceanogr., 21 , 173182.

  • Bower, A. S., and T. Rossby, 1989: Evidence of cross-frontal exchange processes in the Gulf Stream based on isopycnal RAFOS float data. J. Phys. Oceanogr., 19 , 11771190.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., H. T. Rossby, and J. L. Lillibridge, 1985: The Gulf Stream—Barrier or blender? J. Phys. Oceanogr., 15 , 2433.

  • Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92 , 325334.

  • Cerovecki, I., R. A. Plumb, and W. Heres, 2009: Eddy transport and mixing in a wind- and buoyancy-driven jet on the sphere. J. Phys. Oceanogr., 39 , 11331149.

    • Search Google Scholar
    • Export Citation
  • Dong, S., J. Sprintall, S. Gille, and L. Talley, 2008: Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res, 113 , C06013. doi:10.1029/2006JC004051.

    • Search Google Scholar
    • Export Citation
  • d’Ovidio, F., E. Shuckburgh, and B. Legras, 2009: Local mixing events in the upper troposphere and lower stratosphere. Part I: Detection with the Lyapunov diffusivity. J. Atmos. Sci., 66 , 36783694.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., and M. McIntyre, 2008: Multiple jets as PV staircases: The Phillips Effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65 , 855875.

    • Search Google Scholar
    • Export Citation
  • Esler, J. G., 2008a: Robust and leaky transport barriers in unstable baroclinic flows. Phys. Fluids, 20 , 116602. doi:10.1063/1.3013631.

  • Esler, J. G., 2008b: The turbulent equilibration of an unstable baroclinic jet. J. Fluid Mech., 599 , 241268.

  • Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35 , 18911910.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., K. Speer, J. R. Ledwell, and A. C. Naveira-Garabato, 2007: Mixing and stirring in the Southern Ocean. Eos, Trans. Amer. Geophys. Union, 88 .doi:10.1029/2007EO390002.

    • Search Google Scholar
    • Export Citation
  • Gourestski, V., and K. Koltermann, 2004: WOCE global hydrographic climatology. Tech. Rep., Berichte des Bundesamtes fur Seeschifffahrt und Hydrohraphie, 52 pp.

    • Search Google Scholar
    • Export Citation
  • Green, J. S., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96 , 157185.

    • Search Google Scholar
    • Export Citation
  • Greenslade, M. D., and P. Haynes, 2008: Vertical transition in transport and mixing in baroclinic flows. J. Atmos. Sci., 65 , 11371158.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., and E. Shuckburgh, 2000a: Effective diffusivity as a diagnostic of atmospheric transport. Part I: Stratosphere. J. Geophys. Res., 105 , 2277722794.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., and E. Shuckburgh, 2000b: Effective diffusivity as a diagnostic of atmospheric transport. Part II: Troposphere and lower stratosphere. J. Geophys. Res., 105 , 795810.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., D. A. Poet, and E. Shuckburgh, 2007: Transport and mixing in kinematic and dynamically consistent flows. J. Atmos. Sci., 64 , 36403652.

    • Search Google Scholar
    • Export Citation
  • Held, I., and T. Schneider, 1999: The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci., 56 , 16681697.

    • Search Google Scholar
    • Export Citation
  • Jackett, D., and T. McDougall, 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr., 27 , 237263.

  • Karsten, R. H., and J. Marshall, 2002: Constructing the residual circulation of the ACC from observations. J. Phys. Oceanogr., 32 , 33153327.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1997: On the parameterization of eddy transfer: Part I: Theory. J. Mar. Res., 55 , 11711197.

  • Kuo, A., R. A. Plumb, and J. Marshall, 2005: Transformed Eulerian-mean theory. Part II: Potential vorticity homogenization and equilibrium of a wind- and buoyancy-driven zonal flow. J. Phys. Oceanogr., 35 , 175187.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., 1981: On the parameterization of geostrophic eddies in the ocean. J. Phys. Oceanogr., 11 , 12571271.

  • Marshall, J., and G. Shutts, 1981: A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11 , 16771681.

  • Marshall, J., D. Olbers, H. Ross, and D. Wolf-Gladrow, 1993: Potential vorticity constraints on the dynamics and hydrography of the Southern Ocean. J. Phys. Oceanogr., 23 , 465487.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 , 57535766.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., E. Shuckburgh, H. Jones, and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36 , 18061821.

    • Search Google Scholar
    • Export Citation
  • Mazloff, M., 2008: The Southern Ocean meridional overturning circulation as diagnosed from an eddy permitting state estimate. Ph.D. thesis, Massachusetts Institute of Technology, 127 pp.

  • McIntyre, M., and T. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305 , 593600.

  • Nakamura, N., 1996: Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J. Atmos. Sci., 53 , 15241537.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., and J. Ma, 1997: Modified Lagrangian-mean diagnostics of the stratospheric polar vortices 2. Nitrous oxide and seasonal barrier migration in the cryogenic limb array etalon spectrometer and SKYHI general circulation model. J. Geophys. Res., 102 , 2572125735.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and R. Ferarri, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35 , 165174.

    • Search Google Scholar
    • Export Citation
  • Rhines, P., and W. Young, 1982: How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech., 133 , 133145.

  • Rogerson, A. M., P. D. Miller, L. J. Pratt, and C. K. R. T. Jones, 1999: Lagrangian motion and fluid exchange in a barotropic meandering jet. J. Phys. Oceanogr., 29 , 26352655.

    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, R. Morrow, and R. Lumpkin, 2008: An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the Southern Ocean. J. Mar. Res., 66 , 441463.

    • Search Google Scholar
    • Export Citation
  • Shuckburgh, E., and P. Haynes, 2003: Diagnosing transport and mixing using a tracer-based coordinate system. Phys. Fluids, 15 , 33423357.

    • Search Google Scholar
    • Export Citation
  • Shuckburgh, E., H. Jones, J. Marshall, and C. Hill, 2009a: Robustness of an effective diffusivity diagnostic in oceanic flows. J. Phys. Oceanogr., 39 , 19932009.

    • Search Google Scholar
    • Export Citation
  • Shuckburgh, E., H. Jones, J. Marshall, and C. Hill, 2009b: Understanding the regional variability of eddy diffusivity in the Pacific sector of the Southern Ocean. J. Phys. Oceanogr., 39 , 20112023.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: The geography of linear baroclinic instability in the earth’s oceans. J. Mar. Res., 65 , 655683.

  • Smith, K. S., and J. Marshall, 2009: Evidence for enhanced eddy mixing at middepth in the Southern Ocean. J. Phys. Oceanogr., 39 , 5069.

    • Search Google Scholar
    • Export Citation
  • Speer, K., S. Rintoul, and B. Sloyan, 2000: The diabatic deacon cell. J. Phys. Oceanogr., 30 , 32123223.

  • Stephens, C., J. Antonov, T. Boyer, M. Conkright, R. Locarini, T. O’Brien, and H. Garcia, 2001: Temperature. Vol. 1, World Ocean Atlas 2001, NOAA Atlas NESDIS X, 176 pp.

    • Search Google Scholar
    • Export Citation
  • Stone, P., 1978: Baroclinic adjustment. J. Atmos. Sci., 35 , 561571.

  • Thompson, A., 2010: Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr., 67 .in press.

  • Treguier, A. M., 1999: Evaluating eddy mixing coefficients from eddy-resolving ocean models: A case study. J. Mar. Res., 57 , 89108.

  • Treguier, A. M., I. Held, and V. Larichev, 1997: Parameterization of quasigeostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr., 27 , 567580.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, and T. Haine, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27 , 381403.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and E. R. Abraham, 2008: Stirring in the global surface ocean. Geophys. Res. Lett., 35 , L20605. doi:10.1029/2008GL035526.

  • Wunsch, C., and P. Heimbach, 2007: Practical global oceanic state estimation. Physica D, 230 , 197208.

  • Yuan, G-C., L. J. Pratt, and C. K. R. T. Jones, 2002: Barrier destruction and Lagrangian predictability at depth in a meandering jet. Dyn. Atmos. Oceans, 35 , 4161.

    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., and R. S. Lindzen, 2004a: Baroclinic equilibration and the maintenance of the momentum balance. Part I: A barotropic analog. J. Atmos. Sci., 61 , 14691482.

    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., and R. S. Lindzen, 2004b: Baroclinic equilibration and the maintenance of the momentum balance. Part II: 3D results. J. Atmos. Sci., 61 , 14831499.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 413 292 1
PDF Downloads 352 241 2

Enhancement of Mesoscale Eddy Stirring at Steering Levels in the Southern Ocean

View More View Less
  • 1 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 2 British Antarctic Survey, Cambridge, United Kingdom
Restricted access

Abstract

Meridional cross sections of effective diffusivity in the Southern Ocean are presented and discussed. The effective diffusivity, Keff, characterizes the rate at which mesoscale eddies stir properties on interior isopycnal surfaces and laterally at the sea surface. The distributions are obtained by monitoring the rate at which eddies stir an idealized tracer whose initial distribution varies monotonically across the Antarctic Circumpolar Current (ACC). In the absence of observed maps of eddying currents in the interior ocean, the advecting velocity field is taken from an eddy-permitting state estimate of the Southern Ocean (SOSE). A three-dimensional advection–diffusion equation is solved and the diffusivity diagnosed by applying the Nakamura technique on both horizontal and isopycnal surfaces. The resulting meridional sections of Keff reveal intensified isopycnal eddy stirring (reaching values of ∼2000 m2 s−1) in a layer deep beneath the ACC but rising toward the surface on the equatorward flank. Lower effective diffusivity values (∼500 m2 s−1) are found near the surface where the mean flow of the ACC is strongest. It is argued that Keff is enhanced in the vicinity of the steering level of baroclinic waves, which is deep along the axis of the ACC but shallows on the equatorial flank. Values of Keff are also found to be spatially correlated with gradients of potential vorticity on isopycnal surfaces and are large where those gradients are weak and vice versa, as expected from simple dynamical arguments. Finally, implications of the spatial distributions of Keff for the dynamics of the ACC and its overturning circulation are discussed.

Corresponding author address: Ryan Abernathey, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Room 54-1421, 77 Massachusetts Avenue, Cambridge, MA 02139. Email: rpa@mit.edu

Abstract

Meridional cross sections of effective diffusivity in the Southern Ocean are presented and discussed. The effective diffusivity, Keff, characterizes the rate at which mesoscale eddies stir properties on interior isopycnal surfaces and laterally at the sea surface. The distributions are obtained by monitoring the rate at which eddies stir an idealized tracer whose initial distribution varies monotonically across the Antarctic Circumpolar Current (ACC). In the absence of observed maps of eddying currents in the interior ocean, the advecting velocity field is taken from an eddy-permitting state estimate of the Southern Ocean (SOSE). A three-dimensional advection–diffusion equation is solved and the diffusivity diagnosed by applying the Nakamura technique on both horizontal and isopycnal surfaces. The resulting meridional sections of Keff reveal intensified isopycnal eddy stirring (reaching values of ∼2000 m2 s−1) in a layer deep beneath the ACC but rising toward the surface on the equatorward flank. Lower effective diffusivity values (∼500 m2 s−1) are found near the surface where the mean flow of the ACC is strongest. It is argued that Keff is enhanced in the vicinity of the steering level of baroclinic waves, which is deep along the axis of the ACC but shallows on the equatorial flank. Values of Keff are also found to be spatially correlated with gradients of potential vorticity on isopycnal surfaces and are large where those gradients are weak and vice versa, as expected from simple dynamical arguments. Finally, implications of the spatial distributions of Keff for the dynamics of the ACC and its overturning circulation are discussed.

Corresponding author address: Ryan Abernathey, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Room 54-1421, 77 Massachusetts Avenue, Cambridge, MA 02139. Email: rpa@mit.edu

Save