• Bingham, F. M., S. D. Howden, and C. J. Koblinsky, 2002: Sea surface salinity measurements in the historical database. J. Geophys. Res., 107 , 8019. doi:10.1029/2000JC000767.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4 , 5588.

  • Bleck, R., and D. B. Boudra, 1981: Initial testing of a numerical ocean circulation model using a hybrid (quasi-isopycnic) vertical coordinate. J. Phys. Oceanogr., 11 , 755770.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., and S. G. Benjamin, 1993: Regional weather prediction with a model combining terrain-following and isentropic coordinates. Part I: Model description. Mon. Wea. Rev., 121 , 17701785.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., C. Stephens, J. I. Antonov, M. E. Conkright, L. A. Locarnini, T. D. O’Brien, and H. E. Garcia, 2002: Salinity. Vol. 2, World Ocean Atlas 2001, NOAA Atlas NESDIS 49, 165 pp.

    • Search Google Scholar
    • Export Citation
  • Bradley, E. F., C. W. Fairall, J. E. Hare, and A. A. Grachev, 2000: An old and improved bulk algorithm for air-sea fluxes. Preprints, 14th Symp. on Boundary Layer and Turbulence, Aspen, CO, Amer. Meteor. Soc., 294–296.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136 , 29993017.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. A. Chepurin, X. Cao, and B. S. Giese, 2000a: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30 , 294309.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. A. Chepurin, and X. Cao, 2000b: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–95. Part II: Results. J. Phys. Oceanogr., 30 , 311326.

    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., and O. Pizarro, 2005a: Mean surface circulation and mesoscale turbulent flow characteristics in the eastern South Pacific from satellite tracked drifters. J. Geophys. Res., 110 , C05014. doi:10.1029/2004JC002628.

    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., and O. Pizarro, 2005b: Eddy characteristics in the eastern South Pacific. J. Geophys. Res., 110 , C06005. doi:10.1029/2004JC002815.

    • Search Google Scholar
    • Export Citation
  • Colbo, K., and R. Weller, 2007: The variability and heat budget of the upper ocean under the Chile-Peru stratus. J. Mar. Res., 65 , 607637.

    • Search Google Scholar
    • Export Citation
  • Diaz, H., C. Folland, T. Manabe, D. Parker, R. Reynolds, and S. Woodruff, 2002: Workshop on advances in the use of historical marine climate data. WMO Bull., 51 , 377380.

    • Search Google Scholar
    • Export Citation
  • Gordon, C. T., A. Rosati, and R. Gudgel, 2000: Tropical sensitivity of a coupled model to specified ISCCP low clouds. J. Climate, 13 , 22392260.

    • Search Google Scholar
    • Export Citation
  • Han, W., 2005: Origins and dynamics of the 90-day and 30–60-day variations in the equatorial Indian Ocean. J. Phys. Oceanogr., 35 , 708728.

    • Search Google Scholar
    • Export Citation
  • Han, W., T. Shinoda, L-L. Fu, and J. P. McCreary, 2006: Impact of atmospheric intraseasonal oscillations on the Indian Ocean dipole. J. Phys. Oceanogr., 36 , 670690.

    • Search Google Scholar
    • Export Citation
  • Hormazabal, S., G. Shaffer, and O. Leth, 2004: Coastal transition zone off Chile. J. Geophys. Res., 109 , C01021. doi:10.1029/2003JC001956.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., E. J. Metzger, P. J. Hogan, C. E. Tilburg, and J. F. Shriver, 2008: Steering of upper ocean currents and fronts by the topographically constrained abyssal circulation. Dyn. Atmos. Oceans, 45 , 102134.

    • Search Google Scholar
    • Export Citation
  • Jones, P. W., 1999: First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Wea. Rev., 127 , 22042210.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kara, A. B., H. E. Hurlburt, and A. J. Wallcraft, 2005a: Stability-dependent exchange coefficients for air–sea fluxes. J. Atmos. Oceanic Technol., 22 , 10801094.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., A. J. Wallcraft, and H. E. Hurlburt, 2005b: A new solar radiation penetration scheme for use in ocean mixed layer studies: An application to the Black Sea using a fine-resolution Hybrid Coordinate Ocean Model (HYCOM). J. Phys. Oceanogr., 35 , 1332.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., A. J. Wallcraft, and H. E. Hurlburt, 2005c: Sea surface temperature sensitivity to water turbidity from simulations of the turbid Black Sea using HYCOM. J. Phys. Oceanogr., 35 , 3354.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15871606.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: Review and model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20 , 44974525.

  • Ma, C-C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean–atmosphere GCM study. J. Climate, 9 , 16351645.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123 , 28252838.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., 1997: Tropical thermostats and low cloud cover. J. Climate, 10 , 409440.

  • Penven, P., V. Echevin, J. Pasapera, F. Colas, and J. Tam, 2005: Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach. J. Geophys. Res., 110 , C10021. doi:10.1029/2005JC002945.

    • Search Google Scholar
    • Export Citation
  • Pizarro, O., G. Shaffer, B. Dewitte, and M. Ramos, 2002: Dynamics of seasonal and interannual variability of the Peru-Chile Undercurrent. Geophys. Res. Lett., 29 , 1581. doi:10.1029/2002GL014790.

    • Search Google Scholar
    • Export Citation
  • Rosmond, T. E., J. Teixeira, M. Peng, T. F. Hogan, and R. Pauley, 2002: Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models. Oceanography, 15 , 99108.

    • Search Google Scholar
    • Export Citation
  • Shaffer, G., O. Pizarro, L. Djurfeldt, S. Salinas, and J. Rutlant, 1997: Circulation and low-frequency variability near the Chile coast: Remotely forced fluctuations during the 1991–92 El Niño. J. Phys. Oceanogr., 27 , 217235.

    • Search Google Scholar
    • Export Citation
  • Shaji, C., C. Wang, G. R. Halliwell Jr., and A. Wallcraft, 2005: Simulation of tropical Pacific and Atlantic Oceans using a hybrid coordinate ocean model. Ocean Modell., 9 , 253282.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., and J. L. Lin, 2009: Interannual variability of the upper ocean in the southeast Pacific stratus cloud region. J. Climate, 22 , 50725088.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., P. E. Roundy, and G. E. Kiladis, 2008: Variability of intraseasonal Kelvin waves in the equatorial Pacific Ocean. J. Phys. Oceanogr., 38 , 921944.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and J. K. Gibson, 2002: The ERA-40 project plan. ECMWF ERA-40 Project Rep. Series 1, 63 pp.

  • Smith, R. D., J. K. Dukowicz, and R. C. Malone, 1992: Parallel ocean general circulation modeling. Physica D, 60 , 3861.

  • Stephens, C., J. I. Antonov, T. P. Boyer, M. E. Conkright, R. A. Locarnini, T. D. O’Brien, and H. E. Garcia, 2002: Temperature. Vol. 1, World Ocean Atlas 2001, NOAA Atlas NESDIS 49, 169 pp.

    • Search Google Scholar
    • Export Citation
  • Wood, R., C. Bretherton, B. Huebert, C. R. Mechoso, and R. Weller, 2007: The VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS): Improving understanding, model simulations, and prediction of the southeast Pacific climate system. Post-VOCALS-Rex Rep. [Available online at http://www.eol.ucar.edu/projects/vocals/].

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., 2004: The shape of continents, air-sea interaction, and the rising branch of the Hadley circulation. The Hadley Circulation: Present, Past and Future, H. F. Diaz and R. S. Bradley, Eds., Kluwer Academic, 121–152.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88 , 527539.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air-Sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux Project Tech. Rep. OA-2008-01, 64 pp.

    • Search Google Scholar
    • Export Citation
  • Zamudio, L., H. E. Hurlburt, E. J. Metzger, S. L. Morey, J. J. O’Brien, C. Tilburg, and J. Zavala-Hidalgo, 2006: Interannual variability of Tehuantepec eddies. J. Geophys. Res., 111 , C05001. doi:10.1029/2005JC003182.

    • Search Google Scholar
    • Export Citation
  • Zamudio, L., H. E. Hurlburt, E. J. Metzger, and C. E. Tilburg, 2007: Tropical wave-induced oceanic eddies at Cabo Corrientes and the María Islands, Mexico. J. Geophys. Res., 112 , C05048. doi:10.1029/2006JC004018.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., and B. S. Giese, 2009: Ocean heat transport in Simple Ocean Data Assimilation: structure and mechanisms. J. Geophys. Res., 114 , C11009. doi:10.1029/2008JC005190.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 166 85 0
PDF Downloads 98 53 0

Upper-Ocean Processes under the Stratus Cloud Deck in the Southeast Pacific Ocean

View More View Less
  • 1 NOAA/ESRL/CIRES Climate Diagnostics Center, Boulder, Colorado
  • | 2 Naval Research Laboratory, Stennis Space Center, Mississippi
  • | 3 Department of Geography, The Ohio State University, Columbus, Ohio
  • | 4 Department of Oceanography, Texas A&M University, College Station, Texas
Restricted access

Abstract

The annual mean heat budget of the upper ocean beneath the stratocumulus/stratus cloud deck in the southeast Pacific is estimated using Simple Ocean Data Assimilation (SODA) and an eddy-resolving Hybrid Coordinate Ocean Model (HYCOM). Both are compared with estimates based on Woods Hole Oceanographic Institution (WHOI) Improved Meteorological (IMET) buoy observations at 20°S, 85°W. Net surface heat fluxes are positive (warming) over most of the area under the stratus cloud deck. Upper-ocean processes responsible for balancing the surface heat flux are examined by estimating each term in the heat equation. In contrast to surface heat fluxes, geostrophic transport in the upper 50 m causes net cooling in most of the stratus cloud deck region. Ekman transport provides net warming north of the IMET site and net cooling south of the IMET site. Although the eddy heat flux divergence term can be comparable to other terms at a particular location, such as the IMET mooring site, it is negligible for the entire stratus region when area averaged because it is not spatially coherent in the open ocean. Although cold-core eddies are often generated near the coast in the eddy-resolving model, they do not significantly impact the heat budget in the open ocean in the southeast Pacific.

Corresponding author address: Yangxing Zheng, NOAA/ESRL/CIRES Climate Diagnostics Center, 325 Broadway, R/PSD1, Boulder, CO 80305. Email: yangxing.zheng@noaa.gov

Abstract

The annual mean heat budget of the upper ocean beneath the stratocumulus/stratus cloud deck in the southeast Pacific is estimated using Simple Ocean Data Assimilation (SODA) and an eddy-resolving Hybrid Coordinate Ocean Model (HYCOM). Both are compared with estimates based on Woods Hole Oceanographic Institution (WHOI) Improved Meteorological (IMET) buoy observations at 20°S, 85°W. Net surface heat fluxes are positive (warming) over most of the area under the stratus cloud deck. Upper-ocean processes responsible for balancing the surface heat flux are examined by estimating each term in the heat equation. In contrast to surface heat fluxes, geostrophic transport in the upper 50 m causes net cooling in most of the stratus cloud deck region. Ekman transport provides net warming north of the IMET site and net cooling south of the IMET site. Although the eddy heat flux divergence term can be comparable to other terms at a particular location, such as the IMET mooring site, it is negligible for the entire stratus region when area averaged because it is not spatially coherent in the open ocean. Although cold-core eddies are often generated near the coast in the eddy-resolving model, they do not significantly impact the heat budget in the open ocean in the southeast Pacific.

Corresponding author address: Yangxing Zheng, NOAA/ESRL/CIRES Climate Diagnostics Center, 325 Broadway, R/PSD1, Boulder, CO 80305. Email: yangxing.zheng@noaa.gov

Save