• Alford, M. H., 2003: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423 , 159162.

    • Search Google Scholar
    • Export Citation
  • Chen, C., and L. Xie, 1997: A numerical study of wind-induced, near-inertial oscillations over the Texas-Louisiana shelf. J. Geophys. Res., 102 , (C7). 1558315593.

    • Search Google Scholar
    • Export Citation
  • DiMarco, S. F., and R. O. Reid, 1998: Characterization of the principal tidal current constituents on the Texas-Louisiana Shelf. J. Geophys. Res., 103 , (C2). 30923109.

    • Search Google Scholar
    • Export Citation
  • DiMarco, S. F., A. E. Jochens, and M. K. Howard, 1997: LATEX shelf data report: Current meter moorings, April 1992 through December 1994. Texas A&M University, College Station, TX, Tech. Rep. 97-01-T, 61 pp. + appendices.

    • Search Google Scholar
    • Export Citation
  • DiMarco, S. F., M. K. Howard, and R. O. Reid, 2000: Seasonal variation of wind-driven diurnal current cycling on the Texas-Louisiana Continental Shelf. Geophys. Res. Lett., 27 , 10171020.

    • Search Google Scholar
    • Export Citation
  • Ekman, V. W., and B. Helland-Hansen, 1931: Measurements of ocean currents (Experiments in the North Atlantic). Kgl. Fysiiogr. Sallsk. Lund, 1 , 17.

    • Search Google Scholar
    • Export Citation
  • Federiuk, J., and J. S. Allen, 1996: Model studies of near-inertial waves in flow over the Oregon Continental Shelf. J. Phys. Oceanogr., 26 , 20532075.

    • Search Google Scholar
    • Export Citation
  • Flather, R. A., 1976: A tidal model of the northwest European continental shelf. Mem. Soc. Roy. Sci. Liege, 10 (6) 141164.

  • Garrett, C., 2001: What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31 , 962971.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14 , 11291151.

  • Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. F. Shchepetkin, 2000: Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32 , 239281.

    • Search Google Scholar
    • Export Citation
  • Hetland, R. D., and L. Campbell, 2007: Covergent blooms of Karenia brevis along the Texas coast. Geophys. Res. Lett., 34 , L19604. doi:10.1029/2007GL030474.

    • Search Google Scholar
    • Export Citation
  • Hetland, R. D., and S. F. DiMarco, 2008: How does the character of oxygen demand control the structure of hypoxia on the Texas-Louisiana continental shelf. J. Mar. Syst., 70 , 4962.

    • Search Google Scholar
    • Export Citation
  • Hunter, E., R. Chant, L. Bowers, S. Glenn, and J. Kohut, 2007: Spatial and temporal variability of diurnal wind forcing in the coastal ocean. Geophys. Res. Lett., 34 , L03607. doi:10.1029/2006GL028945.

    • Search Google Scholar
    • Export Citation
  • Kroll, J., 1975: The propagation of wind-generated inertial oscillations from the surface into the deep ocean. J. Mar. Res., 33 , 1551.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15 , 544565.

  • Kunze, E., L. K. Rosenfeld, G. S. Carter, and M. C. Gregg, 2002: Internal waves in Monterey Submarine Canyon. J. Phys. Oceanogr., 32 , 18901913.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and M. C. Gregg, 2003: Shear and baroclinic energy flux on the summer New England Shelf. J. Phys. Oceanogr., 33 , 14621475.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and K. B. Winters, 2005: Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°N. Geophys. Res. Lett., 32 , L15605. doi:10.1029/2005GL023376.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and N. Phillips, 1968: Coherence and band structure of inertial motion in the sea. Rev. Geophys., 6 , 447472.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes: Energetics of tidal and wind mixing. Deep-Sea Res., 45 , 19772010.

  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: On estimating internal-wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22 , 15511570.

    • Search Google Scholar
    • Export Citation
  • Nowlin Jr., W. D., A. E. Jochens, R. O. Reid, and S. F. DiMarco, 1998: Texas-Louisiana Shelf Circulation and Transport Processes Study: Synthesis report. Vol. I, Tech. Rep., OCS Study MMS 98-0035, U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA, 502 pp.

    • Search Google Scholar
    • Export Citation
  • Orlic, M., 1987: Oscillations at the inertial period on the Adriatic Sea Shelf. Cont. Shelf Res., 7 , 577598.

  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic including error estimates in Matlab using T-TIDE. Comput. Geosci., 28 , 929937.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Pollard, R. T., and R. C. Millard, 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res., 17 , 153175.

    • Search Google Scholar
    • Export Citation
  • Rippeth, T. P., N. P. Fisher, and J. H. Simpson, 2001: The cycle of turbulent dissipation in the presence of tidal straining. J. Phys. Oceanogr., 31 , 24582471.

    • Search Google Scholar
    • Export Citation
  • Rippeth, T. P., J. H. Simpson, R. J. Player, and M. Garcia, 2002: Current oscillations in the diurnal-inertial band on the Catalonian shelf in spring. Cont. Shelf Res., 22 , 247265.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, L. K., 1988: Diurnal period wind stress and current fluctuations over the continental shelf off northern California. J. Geophys. Res., 93 , (C3). 22572276.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topographically-following-coordinate oceanic model. Ocean Modell., 9 , 347404.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., J. Brown, J. Matthews, and G. Allen, 1990: Tidal straining, density currents and stirring in the control of estuarine stratification. Estuaries, 13 , 125132.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., T. P. Rippeth, P. Hyder, and I. M. Lucas, 2002: Forced oscillations near the critical latitude for diurnal-inertial resonance. J. Phys. Oceanogr., 22 , 177187.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., J. A. M. Green, J. H. Simpson, T. R. Osborn, and W. A. M. Nimmo Smith, 2008: Boils and turbulence in a weakly stratified shallow tidal sea. J. Phys. Oceanogr., 38 , 17111730.

    • Search Google Scholar
    • Export Citation
  • Tintore, J., D-P. Wang, E. Garcia, and A. Viudez, 1995: Near-inertial motions in the coastal ocean. J. Mar. Syst., 6 , 301312.

  • Umlauf, L., and H. Burchard, 2003: A generic length-scale equation for geophysical turbulence models. J. Mar. Res., 61 , 235265.

  • van Haren, H., 2005: Tidal and near-inertial peak variations around the diurnal critical latitude. Geophys. Res. Lett., 32 , L23611. doi:10.1029/2005GL024160.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., 2007: Longitudinal and topographic variations in North Atlantic tidal and inertial energy around latitudes 30 ± 10°N. J. Geophys. Res., 112 , C10020. doi:10.1029/2007JC004193.

    • Search Google Scholar
    • Export Citation
  • Webster, F., 1968: Observations of inertial period motions in the deep sea. Rev. Geophys., 6 , 473490.

  • Wiseman, W. J., N. N. Rabalais, R. E. Turner, S. P. Dinnel, and A. MacNaughton, 1997: Seasonal and interannual variability within the Louisiana coastal current: Stratification and hypoxia. J. Mar. Syst., 12 , 237248.

    • Search Google Scholar
    • Export Citation
  • Xing, J., A. M. Davies, and P. Fraunie, 2004: Model studies of near-inertial motion on the continental shelf off northwest Spain: A three-dimensional/two-dimensional/one-dimensional model comparison study. J. Geophys. Res., 109 , C01017. doi:10.1029/2003JC001822.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., S. F. DiMarco, D. C. Smith IV, M. K. Howard, A. E. Jochens, and R. D. Hetland, 2009: Near-resonant ocean response to sea breeze on a stratified continental shelf. J. Phys. Oceanogr., 39 , 21372155.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2 2 2
PDF Downloads 0 0 0

A Numerical Study of Sea-Breeze-Driven Ocean Poincare Wave Propagation and Mixing near the Critical Latitude

View More View Less
  • 1 Department of Oceanography, Texas A&M University, College Station, Texas
Restricted access

Abstract

Near the vicinity of 30° latitude, the coincidence of the period of sea breeze and the inertial period of the ocean leads to a maximum near-inertial ocean response to sea breeze. This produces a propagating inertial internal (Poincare) wave response that transfers energy laterally away from the coast and provides significant vertical mixing. In this paper, the latitudinal dependence of this wave propagation and its associated vertical mixing are investigated primarily using a nonlinear numerical ocean model. Three-dimensional idealized simulations show that the coastal oceanic response to sea breeze is trapped poleward of 30° latitude; however, it can propagate offshore as Poincare waves equatorward of 30° latitude. Near 30° latitude, the maximum oceanic response to sea breeze moves offshore slowly because of the near-zero group speed of Poincare waves at this latitude. The lateral energy flux convergence plus the energy input from the wind is maximum near the critical latitude, leading to increased local dissipation by vertical mixing. This local dissipation is greatly reduced at other latitudes. The implications of these results for the Gulf of Mexico (GOM) at ∼30°N is considered. Simulations with realistic bathymetry of the GOM confirm that a basinwide ocean response to coastal sea-breeze forcing is established in form of Poincare waves. Enhanced vertical mixing by the sea breeze is shown on the model northern shelf, consistent with observations on the Texas–Louisiana shelf. Comparison of the three-dimensional and one-dimensional models shows some significant limitations of one-dimensional simplified models for sea-breeze simulations near the critical latitude.

Corresponding author address: Xiaoqian Zhang, Department of Oceanography, Texas A&M University, 3146 TAMU, College Station, TX 77843-3146. Email: zhangxq@tamu.edu

Abstract

Near the vicinity of 30° latitude, the coincidence of the period of sea breeze and the inertial period of the ocean leads to a maximum near-inertial ocean response to sea breeze. This produces a propagating inertial internal (Poincare) wave response that transfers energy laterally away from the coast and provides significant vertical mixing. In this paper, the latitudinal dependence of this wave propagation and its associated vertical mixing are investigated primarily using a nonlinear numerical ocean model. Three-dimensional idealized simulations show that the coastal oceanic response to sea breeze is trapped poleward of 30° latitude; however, it can propagate offshore as Poincare waves equatorward of 30° latitude. Near 30° latitude, the maximum oceanic response to sea breeze moves offshore slowly because of the near-zero group speed of Poincare waves at this latitude. The lateral energy flux convergence plus the energy input from the wind is maximum near the critical latitude, leading to increased local dissipation by vertical mixing. This local dissipation is greatly reduced at other latitudes. The implications of these results for the Gulf of Mexico (GOM) at ∼30°N is considered. Simulations with realistic bathymetry of the GOM confirm that a basinwide ocean response to coastal sea-breeze forcing is established in form of Poincare waves. Enhanced vertical mixing by the sea breeze is shown on the model northern shelf, consistent with observations on the Texas–Louisiana shelf. Comparison of the three-dimensional and one-dimensional models shows some significant limitations of one-dimensional simplified models for sea-breeze simulations near the critical latitude.

Corresponding author address: Xiaoqian Zhang, Department of Oceanography, Texas A&M University, 3146 TAMU, College Station, TX 77843-3146. Email: zhangxq@tamu.edu

Save