Oceanic Internal-Wave Field: Theory of Scale-Invariant Spectra

Yuri V. Lvov Rensselaer Polytechnic Institute, Troy, New York

Search for other papers by Yuri V. Lvov in
Current site
Google Scholar
PubMed
Close
,
Kurt L. Polzin Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Kurt L. Polzin in
Current site
Google Scholar
PubMed
Close
,
Esteban G. Tabak New York University, New York, New York

Search for other papers by Esteban G. Tabak in
Current site
Google Scholar
PubMed
Close
, and
Naoto Yokoyama Doshisha University, Kyotanabe, Japan

Search for other papers by Naoto Yokoyama in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Steady scale-invariant solutions of a kinetic equation describing the statistics of oceanic internal gravity waves based on wave turbulence theory are investigated. It is shown in the nonrotating scale-invariant limit that the collision integral in the kinetic equation diverges for almost all spectral power-law exponents. These divergences come from resonant interactions with the smallest horizontal wavenumbers and/or the largest horizontal wavenumbers with extreme scale separations.

A small domain is identified in which the scale-invariant collision integral converges and numerically find a convergent power-law solution. This numerical solution is close to the Garrett–Munk spectrum. Power-law exponents that potentially permit a balance between the infrared and ultraviolet divergences are investigated. The balanced exponents are generalizations of an exact solution of the scale-invariant kinetic equation, the Pelinovsky–Raevsky spectrum. A small but finite Coriolis parameter representing the effects of rotation is introduced into the kinetic equation to determine solutions over the divergent part of the domain using rigorous asymptotic arguments. This gives rise to the induced diffusion regime.

The derivation of the kinetic equation is based on an assumption of weak nonlinearity. Dominance of the nonlocal interactions puts the self-consistency of the kinetic equation at risk. However, these weakly nonlinear stationary states are consistent with much of the observational evidence.

Corresponding author address: Naoto Yokoyama, Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan. Email: yokoyama@kuaero.kyoto-u.ac.jp

Abstract

Steady scale-invariant solutions of a kinetic equation describing the statistics of oceanic internal gravity waves based on wave turbulence theory are investigated. It is shown in the nonrotating scale-invariant limit that the collision integral in the kinetic equation diverges for almost all spectral power-law exponents. These divergences come from resonant interactions with the smallest horizontal wavenumbers and/or the largest horizontal wavenumbers with extreme scale separations.

A small domain is identified in which the scale-invariant collision integral converges and numerically find a convergent power-law solution. This numerical solution is close to the Garrett–Munk spectrum. Power-law exponents that potentially permit a balance between the infrared and ultraviolet divergences are investigated. The balanced exponents are generalizations of an exact solution of the scale-invariant kinetic equation, the Pelinovsky–Raevsky spectrum. A small but finite Coriolis parameter representing the effects of rotation is introduced into the kinetic equation to determine solutions over the divergent part of the domain using rigorous asymptotic arguments. This gives rise to the induced diffusion regime.

The derivation of the kinetic equation is based on an assumption of weak nonlinearity. Dominance of the nonlocal interactions puts the self-consistency of the kinetic equation at risk. However, these weakly nonlinear stationary states are consistent with much of the observational evidence.

Corresponding author address: Naoto Yokoyama, Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan. Email: yokoyama@kuaero.kyoto-u.ac.jp

Save
  • Anderson, S., 1992: Shear, strain, and thermohaline vertical fine structure in the upper ocean. Ph.D. thesis, University of California, San Diego, 155 pp.

  • Broutman, D., J. W. Rottman, and S. D. Eckermann, 2004: Ray methods for internal waves in the atmosphere and ocean. Annu. Rev. Fluid Mech., 36 , 233253.

    • Search Google Scholar
    • Export Citation
  • Caillol, P., and V. Zeitlin, 2000: Kinetic equations and stationary energy spectra of weakly nonlinear internal gravity waves. Dyn. Atmos. Oceans, 32 , 81112.

    • Search Google Scholar
    • Export Citation
  • Cairns, J. L., and G. O. Williams, 1976: Internal wave observations from a midwater float, 2. J. Geophys. Res., 81 , 19431950.

  • Chereskin, T. K., M. Y. Mooris, P. P. Niiler, P. M. Kosro, R. L. Smith, S. R. Ramp, C. A. Collins, and D. L. Musgrave, 2000: Spatial and temporal characteristics of the mesoscale circulation of the California Current from eddy-resolving moored and shipboard measurements. J. Geophys. Res., 105 , 12451269.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., 1994: Introduction to Geophysical Fluid Dynamics. Prentice-Hall, 320 pp.

  • D’Asaro, E. A., 1984: Wind forced internal waves in the North Pacific and Sargasso Sea. J. Phys. Oceanogr., 14 , 781794.

  • D’Asaro, E. A., 1995: A collection of papers on the ocean storms experiment. J. Phys. Oceanogr., 25 , 28172818.

  • D’Asaro, E. A., and M. D. Morehead, 1991: Internal waves and velocity fine structure in the Arctic Ocean. J. Geophys. Res., 96 , 1272512738.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C., D. Rudnick, R. Weller, R. T. Pollard, and L. Regier, 1991: Ocean frontal variability in the Frontal Air-Sea Interaction Experiment. J. Geophys. Res., 96 , 85698591.

    • Search Google Scholar
    • Export Citation
  • Flatté, S. M., F. S. Henyey, and J. A. Wright, 1985: Eikonal calculations of short-wavelength internal-wave spectra. J. Geophys. Res., 90 , 72657272.

    • Search Google Scholar
    • Export Citation
  • Foffonoff, N. P., 1969: Spectral characteristics of internal waves in the ocean. Deep-Sea Res., 16 , 5871.

  • Garrett, C. J. R., and W. H. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 3 , 225264.

  • Garrett, C. J. R., and W. H. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80 , 281297.

  • Garrett, C. J. R., and W. H. Munk, 1979: Internal waves in the ocean. Annu. Rev. Fluid Mech., 11 , 339369.

  • Gregg, M. C., H. E. Seim, and D. B. Percival, 1993: Statistics of shear and turbulent dissipation profiles in random internal wave fields. J. Phys. Oceanogr., 23 , 17771799.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1966: Feynman diagrams and interaction rules of wave-wave scattering processes. Rev. Geophys., 4 , 132.

  • Henyey, F. S., J. Wright, and S. M. Flatté, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91 , 84878495.

    • Search Google Scholar
    • Export Citation
  • Keffer, T., 1983: The baroclinic stability of the Atlantic North Equatorial Current. J. Phys. Oceanogr., 13 , 624631.

  • Kenyon, K. E., 1966: Wave-wave scattering for gravity waves and Rossby waves. Ph.D. thesis, University of California, San Diego, 93 pp.

  • Kenyon, K. E., 1968: Wave-wave interactions of surface and internal waves. J. Mar. Res., 26 , 208231.

  • Kuznetsov, E. A., 1972: On turbulence of ion sound in plasma in a magnetic field. Zh. Eksper. Teoret. Fiz, 62 , 584592.

  • Levine, M. D., J. D. Irish, T. E. Ewart, and S. A. Reynolds, 1986: Simultaneous spatial and temporal measurements of the internal wavefield during MATE. J. Geophys. Res., 91 , 97099719.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., C. A. Paulson, and J. H. Morison, 1987: Observations of internal gravity waves under the arctic pack ice. J. Geophys. Res., 92 , 779782.

    • Search Google Scholar
    • Export Citation
  • Lvov, Y. V., and E. G. Tabak, 2001: Hamiltonian formalism and the Garrett–Munk spectrum of internal waves in the ocean. Phys. Rev. Lett., 87 , 168501. doi:10.1103/PhysRevLett.87.168501.

    • Search Google Scholar
    • Export Citation
  • Lvov, Y. V., and S. Nazarenko, 2004: Noisy spectra, long correlations, and intermittency in wave turbulence. Phys. Rev., 69 , 66608.

  • Lvov, Y. V., and E. G. Tabak, 2004: A Hamiltonian formulation for long internal waves. Physica D, 195 , 106122.

  • Lvov, Y. V., and N. Yokoyama, 2009: Nonlinear wave-wave interactions in stratified flows: Direct numerical simulations. Physica D, 238 , 803815.

    • Search Google Scholar
    • Export Citation
  • Lvov, Y. V., K. L. Polzin, and E. G. Tabak, 2004: Energy spectra of the ocean’s internal wave field: Theory and observations. Phys. Rev. Lett., 92 , 128501. doi:10.1103/PhysRevLett.92.128501.

    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and F. P. Bretherton, 1977: Resonant interaction of oceanic internal waves. J. Geophys. Res., 82 , 13971412.

  • McComas, C. H., and P. Müller, 1981: Time scales of resonant interactions among oceanic internal waves. J. Phys. Oceanogr., 11 , 139147.

    • Search Google Scholar
    • Export Citation
  • Milder, D. M., 1990: The effects of truncation on surface-wave Hamiltonian. J. Fluid Mech., 216 , 249262.

  • Müller, P., and D. J. Olbers, 1975: On the dynamics of internal waves in the deep ocean. J. Geophys. Res., 80 , 38483860.

  • Müller, P., D. J. Olbers, and J. Willebrand, 1978: The IWEX spectrum. J. Geophys. Res., 83 , 479500.

  • Müller, P., G. Holloway, F. Henyey, and N. Pomphrey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys., 24 , 493536.

    • Search Google Scholar
    • Export Citation
  • Olbers, D. J., 1974: On the energy balance of small scale internal waves in the deep sea. Hamburger geophysikalische Einzelschriften 27, 102 pp.

    • Search Google Scholar
    • Export Citation
  • Olbers, D. J., 1976: Nonlinear energy transfer and the energy balance of the internal wave field in the deep ocean. J. Fluid Mech., 74 , 375399.

    • Search Google Scholar
    • Export Citation
  • Pelinovsky, E. N., and M. A. Raevsky, 1977: Weak turbulence of the internal waves of the ocean. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 13 , 187193.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2004: A heuristic description of internal wave dynamics. J. Phys. Oceanogr., 34 , 214230.

  • Polzin, K. L., E. Kunze, J. M. Toole, and R. W. Schmitt, 2003: The partition of finescale energy into internal waves and subinertial motions. J. Phys. Oceanogr., 33 , 234248.

    • Search Google Scholar
    • Export Citation
  • Pomphrey, N., J. D. Meiss, and K. M. Watson, 1980: Description of nonlinear internal wave interactions using Langevin methods. J. Geophys. Res., 85 , 10851094.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., J. R. Ledwell, E. T. Montgomery, K. L. Polzin, and J. M. Toole, 2005: Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic. Science, 308 , 685688.

    • Search Google Scholar
    • Export Citation
  • Sherman, J. T., and R. Pinkel, 1991: Estimates of the vertical wavenumber–frequency spectra of vertical shear and strain. J. Phys. Oceanogr., 21 , 292303.

    • Search Google Scholar
    • Export Citation
  • Silverthorne, K. E., and J. M. Toole, 2009: Seasonal kinetic energy variability of near-inertial motions. J. Phys. Oceanogr., 39 , 10351049.

    • Search Google Scholar
    • Export Citation
  • Voronovich, A. G., 1979: Hamiltonian formalism for internal waves in the ocean. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 15 , 5257.

  • Weller, R. A., K. L. Polzin, D. L. Rundnick, C. C. Eriksen, and N. S. Oakey, 1991: Forced ocean response during the Frontal Air-Sea Interaction Experiment. J. Geophys. Res., 96 , 86118638.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., P. W. Furey, M. A. Spall, and R. E. Davis, 2004: The large-scale context for oceanic subduction in the northeast Atlantic. Deep-Sea Res. I, 51 , 665699.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., 1967: The instability of waves in nonlinear dispersive media. Sov. Phys. JETP, 24 , 740744.

  • Zakharov, V. E., 1968: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys., 2 , 190194.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., V. S. L’vov, and G. Falkovich, 1992: Kolmogorov Spectra of Turbulence I: Wave Turbulence. Springer-Verlag, 246 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 392 181 10
PDF Downloads 264 82 4