Arctic Ocean Warming Contributes to Reduced Polar Ice Cap

Igor V. Polyakov International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Igor V. Polyakov in
Current site
Google Scholar
PubMed
Close
,
Leonid A. Timokhov Arctic and Antarctic Research Institute, St. Petersburg, Russia

Search for other papers by Leonid A. Timokhov in
Current site
Google Scholar
PubMed
Close
,
Vladimir A. Alexeev International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Vladimir A. Alexeev in
Current site
Google Scholar
PubMed
Close
,
Sheldon Bacon National Oceanography Centre, Southampton, United Kingdom

Search for other papers by Sheldon Bacon in
Current site
Google Scholar
PubMed
Close
,
Igor A. Dmitrenko Leibniz Institute of Marine Sciences, University of Kiel, IFM-GEOMAR, Kiel, Germany

Search for other papers by Igor A. Dmitrenko in
Current site
Google Scholar
PubMed
Close
,
Louis Fortier Québec-Océan and ArcticNet, Université Laval, Quebec City, Quebec, Canada

Search for other papers by Louis Fortier in
Current site
Google Scholar
PubMed
Close
,
Ivan E. Frolov Arctic and Antarctic Research Institute, St. Petersburg, Russia

Search for other papers by Ivan E. Frolov in
Current site
Google Scholar
PubMed
Close
,
Jean-Claude Gascard LOCEAN, Pierre and Marie Curie University, Paris, France

Search for other papers by Jean-Claude Gascard in
Current site
Google Scholar
PubMed
Close
,
Edmond Hansen Norwegian Polar Institute, Tromsø, Norway

Search for other papers by Edmond Hansen in
Current site
Google Scholar
PubMed
Close
,
Vladimir V. Ivanov International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Vladimir V. Ivanov in
Current site
Google Scholar
PubMed
Close
,
Seymour Laxon University College London, London, United Kingdom

Search for other papers by Seymour Laxon in
Current site
Google Scholar
PubMed
Close
,
Cecilie Mauritzen Norwegian Meteorological Institute, Oslo, Norway

Search for other papers by Cecilie Mauritzen in
Current site
Google Scholar
PubMed
Close
,
Don Perovich Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire

Search for other papers by Don Perovich in
Current site
Google Scholar
PubMed
Close
,
Koji Shimada Tokyo University of Marine Science and Technology, Tokyo, Japan

Search for other papers by Koji Shimada in
Current site
Google Scholar
PubMed
Close
,
Harper L. Simmons International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Harper L. Simmons in
Current site
Google Scholar
PubMed
Close
,
Vladimir T. Sokolov Arctic and Antarctic Research Institute, St. Petersburg, Russia

Search for other papers by Vladimir T. Sokolov in
Current site
Google Scholar
PubMed
Close
,
Michael Steele Polar Science Center, Applied Physics Lab, University of Washington, Seattle, Washington

Search for other papers by Michael Steele in
Current site
Google Scholar
PubMed
Close
, and
John Toole Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by John Toole in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Analysis of modern and historical observations demonstrates that the temperature of the intermediate-depth (150–900 m) Atlantic water (AW) of the Arctic Ocean has increased in recent decades. The AW warming has been uneven in time; a local ∼1°C maximum was observed in the mid-1990s, followed by an intervening minimum and an additional warming that culminated in 2007 with temperatures higher than in the 1990s by 0.24°C. Relative to climatology from all data prior to 1999, the most extreme 2007 temperature anomalies of up to 1°C and higher were observed in the Eurasian and Makarov Basins. The AW warming was associated with a substantial (up to 75–90 m) shoaling of the upper AW boundary in the central Arctic Ocean and weakening of the Eurasian Basin upper-ocean stratification. Taken together, these observations suggest that the changes in the Eurasian Basin facilitated greater upward transfer of AW heat to the ocean surface layer. Available limited observations and results from a 1D ocean column model support this surmised upward spread of AW heat through the Eurasian Basin halocline. Experiments with a 3D coupled ice–ocean model in turn suggest a loss of 28–35 cm of ice thickness after ∼50 yr in response to the 0.5 W m−2 increase in AW ocean heat flux suggested by the 1D model. This amount of thinning is comparable to the 29 cm of ice thickness loss due to local atmospheric thermodynamic forcing estimated from observations of fast-ice thickness decline. The implication is that AW warming helped precondition the polar ice cap for the extreme ice loss observed in recent years.

h Additional affiliations: Arctic and Antarctic Research Institute, St. Petersburg, Russia, and Scottish Marine Institute, SAMS, Oban, United Kingdom

Corresponding author address: Igor V. Polyakov, International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99709. Email: igor@iarc.uaf.edu

Abstract

Analysis of modern and historical observations demonstrates that the temperature of the intermediate-depth (150–900 m) Atlantic water (AW) of the Arctic Ocean has increased in recent decades. The AW warming has been uneven in time; a local ∼1°C maximum was observed in the mid-1990s, followed by an intervening minimum and an additional warming that culminated in 2007 with temperatures higher than in the 1990s by 0.24°C. Relative to climatology from all data prior to 1999, the most extreme 2007 temperature anomalies of up to 1°C and higher were observed in the Eurasian and Makarov Basins. The AW warming was associated with a substantial (up to 75–90 m) shoaling of the upper AW boundary in the central Arctic Ocean and weakening of the Eurasian Basin upper-ocean stratification. Taken together, these observations suggest that the changes in the Eurasian Basin facilitated greater upward transfer of AW heat to the ocean surface layer. Available limited observations and results from a 1D ocean column model support this surmised upward spread of AW heat through the Eurasian Basin halocline. Experiments with a 3D coupled ice–ocean model in turn suggest a loss of 28–35 cm of ice thickness after ∼50 yr in response to the 0.5 W m−2 increase in AW ocean heat flux suggested by the 1D model. This amount of thinning is comparable to the 29 cm of ice thickness loss due to local atmospheric thermodynamic forcing estimated from observations of fast-ice thickness decline. The implication is that AW warming helped precondition the polar ice cap for the extreme ice loss observed in recent years.

h Additional affiliations: Arctic and Antarctic Research Institute, St. Petersburg, Russia, and Scottish Marine Institute, SAMS, Oban, United Kingdom

Corresponding author address: Igor V. Polyakov, International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99709. Email: igor@iarc.uaf.edu

Save
  • Bekryaev, R. V., I. V. Polyakov, and V. A. Alexeev, 2010: Role of polar amplification in long-term surface air temperature variations and modern arctic warming. J. Climate, 23 , 38883906.

    • Search Google Scholar
    • Export Citation
  • Boyd, T. J., M. Steele, R. D. Muench, and J. T. Gunn, 2002: Partial recovery of the Arctic Ocean halocline. Geophys. Res. Lett., 29 , 1657. doi:10.1029/2001GL014047.

    • Search Google Scholar
    • Export Citation
  • Carmack, E. C., R. W. Macdonald, R. G. Perkin, F. A. McLaughlin, and R. J. Pearson, 1995: Evidence for warming of Atlantic Water in the southern Canadian Basin of the Arctic Ocean: Results from the Larsen-93 expedition. Geophys. Res. Lett., 22 , 10611064.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35 , L01703. doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Dmitrenko, I. A., S. A. Kirillov, V. V. Ivanov, and R. A. Woodgate, 2008a: Mesoscale Atlantic water eddy off the Laptev Sea continental slope carries the signature of upstream interaction. J. Geophys. Res., 113 , C07005. doi:10.1029/2007JC004491.

    • Search Google Scholar
    • Export Citation
  • Dmitrenko, I. A., and Coauthors, 2008b: Toward a warmer Arctic Ocean: Spreading of the early 21st century Atlantic Water warm anomaly along the Eurasian Basin margins. J. Geophys. Res., 113 , C05023. doi:10.1029/2007JC004158.

    • Search Google Scholar
    • Export Citation
  • EWG, 1997: Joint U.S.–Russian atlas of the Arctic Ocean. National Snow and Ice Data Center Environmental Working Group, CD-ROM.

  • Fer, I., 2009: Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmos. Oceanic Sci. Lett., 2 (3) 148152.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1987: Diapycnal mixing in the thermocline: A review. J. Geophys. Res., 92 , 52495286.

  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94 , 96869698.

  • Henyey, F. S., J. Wright, and S. M. Flatté, 1986: Energy and action flow through the internal wave field: An Eikonal approach. J. Geophys. Res., 91 , (C7). 84878495.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., and A. Proshutinsky, 2007: Role of tides in Arctic ocean/ice climate. J. Geophys. Res., 112 , C04S06. doi:10.1029/2006JC003643.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., and Coauthors, 2007: Water properties and circulation in Arctic Ocean models. J. Geophys. Res., 112 , C04S03. doi:10.1029/2006JC003642.

    • Search Google Scholar
    • Export Citation
  • Ivanov, V. V., and Coauthors, 2009: Seasonal oceanic variability off Svalbard in 2004-06. Deep-Sea Res. I, 56 , 114.

  • Johnson, M. A., and I. V. Polyakov, 2001: The Laptev Sea as a source for recent Arctic Ocean salinity changes. Geophys. Res. Lett., 28 , 20172020.

    • Search Google Scholar
    • Export Citation
  • Kochergin, V. P., 1987: Three-dimensional prognostic models. Three Dimensional Coastal Ocean Models, N. H. Heaps, Ed., Amer. Geophys. Union, 201–208.

    • Search Google Scholar
    • Export Citation
  • Kowalik, Z., and I. Polyakov, 1999: Diurnal tides over Kashevarov Bank, Okhotsk Sea. J. Geophys. Res., 104 , (C3). 53615380.

  • Krishfield, R. A., and D. K. Perovich, 2005: Spatial and temporal variability of oceanic heat flux to the Arctic ice pack. J. Geophys. Res., 110 , C07021. doi:10.1029/2004JC002293.

    • Search Google Scholar
    • Export Citation
  • Lenn, Y. D., and Coauthors, 2009: Vertical mixing at intermediate depths in the Arctic boundary current. Geophys. Res. Lett., 36 , L05601. doi:10.1029/2008GL036792.

    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., and M. Steele, 2001: Future of the Arctic Sea ice cover: Implications of an Antarctic analog. Geophys. Res. Lett., 28 , 307310.

    • Search Google Scholar
    • Export Citation
  • Meier, W. N., J. Stroeve, and F. Fetterer, 2007: Whither Arctic sea ice? A clear signal of decline regionally, seasonally and extending beyond the satellite record. Ann. Glaciol., 46 , 428434.

    • Search Google Scholar
    • Export Citation
  • Morison, J., M. Steele, and R. Andersen, 1998: Hydrography of the upper Arctic Ocean measured from the nuclear submarine U.S.S. Pargo. Deep-Sea Res. I, 45 , 1538.

    • Search Google Scholar
    • Export Citation
  • Nghiem, S. V., I. G. Rigor, D. K. Perovich, P. Clemente-Colón, J. W. Weatherly, and G. Neumann, 2007: Rapid reduction of Arctic perennial sea ice. Geophys. Res. Lett., 34 , L19504. doi:10.1029/2007GL031138.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., I. G. Rigor, M. G. McPhee, and J. M. Wallace, 2008: Summer retreat of Arctic sea ice: Role of summer winds. Geophys. Res. Lett., 35 , L24701. doi:10.1029/2008GL035672.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11 , 14431451.

    • Search Google Scholar
    • Export Citation
  • Padman, L., 1995: Small-scale physical processes in the Arctic Ocean. Arctic Oceanography: Marginal Ice Zones and Continental Shelves, Geophys. Monogr., Vol. 49, Amer. Geophys. Union, 97–129.

    • Search Google Scholar
    • Export Citation
  • Padman, L., and T. M. Dillon, 1987: Vertical heat fluxes through the Beaufort Sea thermohaline staircase. J. Geophys. Res., 92 , (C10). 1079910806.

    • Search Google Scholar
    • Export Citation
  • Padman, L., and T. M. Dillon, 1991: Turbulent mixing near the Yermak Plateau during the Coordinated Eastern Arctic Experiment. J. Geophys. Res., 96 , (C3). 47694782.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso, 1999: Arctic sea ice extents, areas, and trends, 1978–1996. J. Geophys. Res., 104 , 2083720856.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., J. A. Richter-Menge, K. F. Jones, and B. Light, 2008: Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35 , L11501. doi:10.1029/2008GL034007.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and L. A. Regier, 1992: Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr., 22 , 609625.

  • Polyakov, I. V., 1995: Maintenance of the Arctic Ocean large-scale baroclinic structure by the M2 tide. Polar Res., 13 , 219232.

  • Polyakov, I. V., and L. A. Timokhov, 1994: Mean fields of temperature and salinity of the Arctic Ocean. Russ. Meteor. Hydrol., 7 , 3338.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and M. Johnson, 2000: Arctic decadal and interdecadal variability. Geophys. Res. Lett., 27 , 40974100.

  • Polyakov, I. V., and S. Martin, 2000: Interaction of the Okhotsk Sea diurnal tides with the Kashevarov Bank polynya. J. Geophys. Res., 105 , (C2). 32813294.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., I. Y. Kulakov, S. A. Kolesov, N. E. Dmitriev, R. S. Pritchard, D. Driver, and A. K. Naumov, 1998: Coupled sea ice-ocean model of the Arctic Ocean. J. Offshore Mech. Arctic Eng., 120 , 7784.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2004: Variability of the intermediate Atlantic Water of the Arctic Ocean over the last 100 years. J. Climate, 17 , 44854497.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2005: One more step toward a warmer Arctic. Geophys. Res. Lett., 32 , L17605. doi:10.1029/2005GL023740.

  • Polyakov, I. V., and Coauthors, 2008: Arctic Ocean freshwater changes over the past 100 years and their causes. J. Climate, 21 , 364384.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25 , 306328.

    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., and M. Johnson, 1997: Two circulation regimes of the wind-driven Arctic Ocean. J. Geophys. Res., 102 , (C6). 1249312514.

    • Search Google Scholar
    • Export Citation
  • Quadfasel, D. A., A. Sy, D. Wells, and A. Tunik, 1991: Warming in the Arctic. Nature, 350 , 385.

  • Rainville, L., and P. Winsor, 2008: Mixing across the Arctic Ocean: Microstructure observations during the Beringia 2005 Expedition. Geophys. Res. Lett., 35 , L08606. doi:10.1029/2008GL033532.

    • Search Google Scholar
    • Export Citation
  • Rothrock, D. A., J. Zhang, and Y. Yu, 2003: The Arctic ice thickness anomaly of the 1990s: A consistent view from observations and models. J. Geophys. Res., 108 , 3083. doi:10.1029/2001JC001208.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., E. P. Jones, L. G. Anderson, and G. Kattner, 1994: On the intermediate depth waters of the Arctic Ocean. The Polar Oceans and Their Role in Shaping the Global Environment: The Nansen Centennial Volume, Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 33–46.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., L. G. Anderson, and E. P. Jones, 1996: Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. J. Geophys. Res., 101 , 88078821.

    • Search Google Scholar
    • Export Citation
  • Shaw, W. J., T. P. Stanton, M. G. McPhee, J. H. Morison, and D. G. Martinson, 2009: Role of the upper ocean in the energy budget of Arctic sea ice during SHEBA. J. Geophys. Res., 114 , C06012. doi:10.1029/2008JC004991.

    • Search Google Scholar
    • Export Citation
  • Shimada, K., F. McLaughlin, E. Carmack, A. Proshutinsky, S. Nishino, and M. Itoh, 2004: Penetration of the 1990s warm temperature anomaly of Atlantic Water in the Canada Basin. Geophys. Res. Lett., 31 , L20301. doi:10.1029/2004GL02086.

    • Search Google Scholar
    • Export Citation
  • Shimada, K., T. Kamoshida, M. Itoh, S. Nishino, E. Carmack, F. McLaughlin, S. Zimmermann, and A. Proshutinsky, 2006: Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett., 33 , L08605. doi:10.1029/2005GL025624.

    • Search Google Scholar
    • Export Citation
  • Sirevaag, A., and I. Fer, 2009: Early spring oceanic heat fluxes and mixing observed from drift stations north of Svalbard. J. Phys. Oceanogr., 39 , 30493069.

    • Search Google Scholar
    • Export Citation
  • Steele, M., and T. Boyd, 1998: Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res., 103 , 1041910435.

  • Steele, M., and G. Flato, 2000: Sea ice growth, melt, and modeling: A survey. The Freshwater Budget of the Arctic Ocean, E. L. Lewis and E. P. Jones, Eds., Kluwer, 549–587.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. Serreze, S. Drobot, S. Gearheard, M. Holland, J. Maslanik, W. Meier, and T. Scambos, 2008: Arctic sea ice extent plummets in 2007. Eos, Trans. Amer. Geophys. Union, 89 , 1314.

    • Search Google Scholar
    • Export Citation
  • Swift, J. H., E. P. Jones, K. Aagaard, E. C. Carmack, M. Hingston, R. W. MacDonald, F. A. McLaughlin, and R. G. Perkin, 1997: Waters of the Makarov and Canada basins. Deep-Sea Res., 44 , 15031529.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., M-L. Timmermans, D. K. Perovich, R. A. Krishfield, A. Proshutinsky, and J. A. Richter-Menge, 2010: Influences of the ocean surface mixed layer and thermohaline stratification on arctic sea ice in the central Canada Basin. J. Geophys. Res., 115 , C10018. doi:10.1029/2009JC005660.

    • Search Google Scholar
    • Export Citation
  • Voltsinger, N. E., K. A. Klevanny, and E. N. Pelinovsky, 1989: Long-Wave Dynamics of Marginal Zone (in Russian). HydroMeteoIzdat, 272 pp.

    • Search Google Scholar
    • Export Citation
  • Walsh, D., I. V. Polyakov, L. A. Timokhov, and E. Carmack, 2007: Thermohaline structure and variability in the eastern Nansen Basin as seen from historical data. J. Mar. Res., 65 , 685714.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., and W. L. Chapman, 2001: 20th-century sea-ice variations from observational data. Ann. Glaciol., 33 , 444448.

  • Woodgate, R. A., K. Aagaard, R. D. Muench, J. Gunn, G. Bjork, B. Rudels, A. T. Roach, and U. Schauer, 2001: The Arctic Ocean boundary current along the Eurasian slope and the adjacent Lomonosov Ridge: Water mass properties, transports and transformations from moored instruments. Deep-Sea Res. I, 48 , 17571792.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. W. Lindsay, M. Steele, and A. Schweiger, 2008: What drove the dramatic retreat of arctic sea ice during summer 2007? Geophys. Res. Lett., 35 , L11505. doi:10.1029/2008GL034005.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12988 1234 214
PDF Downloads 2280 632 43