Transport and Dynamics of the Panay Sill Overflow in the Philippine Seas

Zachary D. Tessler Lamont-Doherty Earth Observatory, Palisades, New York

Search for other papers by Zachary D. Tessler in
Current site
Google Scholar
PubMed
Close
,
Arnold L. Gordon Lamont-Doherty Earth Observatory, Palisades, New York

Search for other papers by Arnold L. Gordon in
Current site
Google Scholar
PubMed
Close
,
Larry J. Pratt Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Larry J. Pratt in
Current site
Google Scholar
PubMed
Close
, and
Janet Sprintall Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Janet Sprintall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations of stratification and currents between June 2007 and March 2009 reveal a strong overflow between 400- and 570-m depth from the Panay Strait into the Sulu Sea. The overflow water is derived from approximately 400 m deep in the South China Sea. Temporal mean velocity is greater than 0.75 m s−1 at 50 m above the 570-m Panay Sill. Empirical orthogonal function analysis of a mooring time series shows that the flow is dominated by the bottom overflow current with little seasonal variance. The overflow does not descend below 1250 m in the Sulu Sea but rather settles above high-salinity deep water derived from the Sulawesi Sea. The mean observed overflow transport at the sill is 0.32 × 106 m3 s−1. The observed transport was used to calculate a bulk diapycnal diffusivity of 4.4 × 10−4 m2 s−1 within the Sulu Sea slab (∼575–1250 m) ventilated from Panay Strait. Analysis of Froude number variation across the sill shows that the flow is hydraulically controlled. A suitable hydraulic control model shows overflow transport equivalent to the observed overflow. Thorpe-scale estimates show turbulent dissipation rates up to 5 × 10−7 W kg−1 just downstream of the supercritical to subcritical flow transition, suggesting a hydraulic jump downstream of the sill.

Corresponding author address: Zachary D. Tessler, Lamont-Doherty Earth Observatory, 61 Route 9W, Palisades, NY 10964. Email: ztessler@ldeo.columbia.edu

Abstract

Observations of stratification and currents between June 2007 and March 2009 reveal a strong overflow between 400- and 570-m depth from the Panay Strait into the Sulu Sea. The overflow water is derived from approximately 400 m deep in the South China Sea. Temporal mean velocity is greater than 0.75 m s−1 at 50 m above the 570-m Panay Sill. Empirical orthogonal function analysis of a mooring time series shows that the flow is dominated by the bottom overflow current with little seasonal variance. The overflow does not descend below 1250 m in the Sulu Sea but rather settles above high-salinity deep water derived from the Sulawesi Sea. The mean observed overflow transport at the sill is 0.32 × 106 m3 s−1. The observed transport was used to calculate a bulk diapycnal diffusivity of 4.4 × 10−4 m2 s−1 within the Sulu Sea slab (∼575–1250 m) ventilated from Panay Strait. Analysis of Froude number variation across the sill shows that the flow is hydraulically controlled. A suitable hydraulic control model shows overflow transport equivalent to the observed overflow. Thorpe-scale estimates show turbulent dissipation rates up to 5 × 10−7 W kg−1 just downstream of the supercritical to subcritical flow transition, suggesting a hydraulic jump downstream of the sill.

Corresponding author address: Zachary D. Tessler, Lamont-Doherty Earth Observatory, 61 Route 9W, Palisades, NY 10964. Email: ztessler@ldeo.columbia.edu

Save
  • Apel, J., J. Holbrook, A. Liu, and J. Tsai, 1985: The Sulu Sea internal soliton experiment. J. Phys. Oceanogr., 15 , 16251651.

  • Borenäs, K., and P. Lundberg, 1986: Rotating hydraulics of flow in a parabolic channel. J. Fluid Mech., 167 , 309326.

  • Borenäs, K., and P. Lundberg, 1988: On the deep-water flow though the Faroe Bank Channel. J. Geophys. Res., 93 , (C2). 12811292.

  • Broecker, W. S., W. C. Patzert, J. R. Toggweiler, and M. Stuiver, 1986: Hydrography, chemistry, and radioisotopes in the Southeast Asian basins. J. Geophys. Res., 91 , (C12). 1434514354.

    • Search Google Scholar
    • Export Citation
  • Chao, S., P. Shaw, and S. Wu, 1996: Deep water ventilation in the South China Sea. Deep-Sea Res., 43 , 445466.

  • Dannenmann, S., B. K. Linsley, D. W. Oppo, Y. Rosenthal, and L. Beaufort, 2003: East Asian monsoon forcing of suborbital variability in the Sulu Sea during Marine Isotope Stage 3: Link to Northern Hemisphere climate. Geochem. Geophys. Geosyst., 4 , 1001. doi:10.1029/2002GC000390.

    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87 , (C12). 96019613.

  • Ferron, B., H. Mercier, K. Speer, A. Gargett, and K. Polzin, 1998: Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr., 28 , 19291945.

    • Search Google Scholar
    • Export Citation
  • Gamo, T., Y. Kato, H. Hasumoto, H. Kadiuchi, N. Momoshima, N. Takahata, and Y. Sano, 2007: Geochemical implications for the mechanism of deep convection in a semi-closed tropical marginal basin: Sulu Sea. Deep-Sea Res., 54 , 413. doi:10.1016/j.dsr2.2006.06.004.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and B. Toulany, 1982: Sea level variability due to meteorological forcing in the northeast Gulf of St. Lawrence. J. Geophys. Res., 87 , 19681978.

    • Search Google Scholar
    • Export Citation
  • Gordon, A., and Z. Tessler, 2009: Competing overflows into the deep Sulu Sea. Proc. MOCA-09, Montreal, Canada, IAMAS, IAPSO, and IACS, Paper 23316.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and L. J. Pratt, 2010: Flow and hydraulics near the sill of Hood Canal, a strongly sheared, continuously stratified fjord. J. Phys. Oceanogr., 40 , 10871105.

    • Search Google Scholar
    • Export Citation
  • Helfrich, K., and L. Pratt, 2003: Rotating hydraulics and upstream basin circulation. J. Phys. Oceanogr., 33 , 16511663.

  • Moum, J., 1996: Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res., 101 , (C6). 1409514109.

  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res., 13 , 707730.

  • Oppo, D. W., B. K. Linsley, Y. Rosenthal, S. Dannenmann, and L. Beaufort, 2003: Orbital and suborbital climate variability in the Sulu Sea, western tropical Pacific. Geochem. Geophys. Geosyst., 4 , 1003. doi:10.1029/2001GC000260.

    • Search Google Scholar
    • Export Citation
  • Polzin, K., K. Speer, J. Toole, and R. Schmitt, 1996: Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean. Nature, 380 , 5457.

    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., 1983: On inertial flow over topography. Part 1. Semigeostrophic adjustment to an obstacle. J. Fluid Mech., 131 , 195218.

    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., and L. Armi, 1987: Hydraulic control of flows with nonuniform potential vorticity. J. Phys. Oceanogr., 17 , 20162029.

  • Pratt, L. J., and J. A. Whitehead, 2008: Rotating Hydraulics: Nonlinear Topographic Effects in the Ocean and Atmosphere. Springer, 589 pp.

    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., H. E. Deese, S. P. Murray, and W. Johns, 2000: Continuous dynamical modes in straits having arbitrary cross sections, with applications to the Bab al Mandab. J. Phys. Oceanogr., 30 , 25152534.

    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., K. R. Helfrich, and D. Leen, 2008: On the stability of ocean overflows. J. Fluid Mech., 602 , 241266. doi:10.1017/S0022112008000827.

    • Search Google Scholar
    • Export Citation
  • Qu, T., and Y. T. Song, 2009: Mindoro Strait and Sibutu Passage transports estimated from satellite data. Geophys. Res. Lett., 36 , L09601. doi:10.1029/2009GL037314.

    • Search Google Scholar
    • Export Citation
  • Qu, T., Y. Du, and H. Sasaki, 2006a: South China Sea throughflow: A heat and freshwater conveyor. Geophys. Res. Lett., 33 , L23617. doi:10.1029/2006GL028350.

    • Search Google Scholar
    • Export Citation
  • Qu, T., J. B. Girton, and J. A. Whitehead, 2006b: Deepwater overflow through Luzon Strait. J. Geophys. Res., 111 , C01002. doi:10.1029/2005JC003139.

    • Search Google Scholar
    • Export Citation
  • Quadfasel, D., H. Kudrass, and A. Frische, 1990: Deep-water renewal by turbidity currents in the Sulu Sea. Nature, 348 , 320322.

  • Ramp, S. R., and Coauthors, 2004: Internal solitons in the northeastern South China Sea. Part I: Sources and deep water propagation. IEEE J. Oceanic Eng., 29 , 11571181. doi:10.1109/JOE.2004.840839.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B., and D. Walsh, 1997: Variations in apparent mixing efficiency in the North Atlantic Central Water. J. Phys. Oceanogr., 27 , 25892605.

    • Search Google Scholar
    • Export Citation
  • Smith, W., and D. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277 , 19571962.

    • Search Google Scholar
    • Export Citation
  • Smyth, W., J. Moum, and D. Caldwell, 2001: The efficiency of mixing in turbulent patches: Inferences from direct simulations and microstructure observations. J. Phys. Oceanogr., 31 , 19691992.

    • Search Google Scholar
    • Export Citation
  • Song, Y. T., 2006: Estimation of interbasin transport using ocean bottom pressure: Theory and model for Asian marginal seas. J. Geophys. Res., 111 , C11S19. doi:10.1029/2005JC003189.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc. London, 286 , 125181.

  • Thorpe, S., 2005: The Turbulent Ocean. Cambridge University Press, 458 pp.

  • Thurnherr, A. M., 2006: Diapycnal mixing associated with an overflow in a deep submarine canyon. Deep-Sea Res., 53 , (1–2). 194206. doi:10.1016/j.dsr2.2005.10.020.

    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., K. J. Richards, C. R. German, G. F. Lane-Serff, and K. G. Speer, 2002: Flow and mixing in the rift valley of the Mid-Atlantic Ridge. J. Phys. Oceanogr., 32 , 17631778.

    • Search Google Scholar
    • Export Citation
  • van Aken, H. M., I. S. Brodjonegoro, and I. Jaya, 2009: The deep-water motion through the Lifamatola Passage and its contribution to the Indonesian throughflow. Deep-Sea Res., 56 , 12031216. doi:10.1016/j.dsr.2009.02.001.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., 2002: Deep velocity profiling using lowered acoustic Doppler current profilers: Bottom track and inverse solutions. J. Atmos. Oceanic Technol., 19 , 794807.

    • Search Google Scholar
    • Export Citation
  • Wesson, J., and M. Gregg, 1994: Mixing at Camarinal Sill in the Strait of Gibraltar. J. Geophys. Res., 99 , (C5). 98479878.

  • Whitehead, J., 1989: Internal hydraulic control in rotating fluids—Applications to oceans. Geophys. Astrophys. Fluid Dyn., 48 , 169192.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1961: Physical oceanography of the Southeast Asian waters. Scripps Institution of Oceanography NAGA Rep. 2, 225 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 506 208 23
PDF Downloads 262 74 20