Sustained, Full-Water-Column Observations of Internal Waves and Mixing near Mendocino Escarpment

Matthew H. Alford Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Matthew H. Alford in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The relative strength and spatiotemporal structure of near-inertial waves (NIW) and internal tides (IT) are examined in the context of recent moored observations made 19 km south of Mendocino Escarpment, an abrupt ridge/step feature in the eastern Pacific. In addition to strong internal tide generation, steps and ridges give rise to the possibility of “shadowing,” wherein near-inertial energy is prevented from reaching depths beneath a characteristic intersecting the ridge top. A combination of two moored profilers and a long-range acoustic Doppler current profiler (ADCP) yielded velocity and shear measurements from 100 to 3640 m (60 m above bottom) and isopycnal depth, strain, and overturn-inferred turbulence dissipation rate from 1000 to 3640 m. Sampling intervals (20 min in the upper 1000 m and 1.5 h below that) were fast enough to minimize aliasing of higher-frequency internal-wave motions. The 67-day-long record is easily sufficient to isolate NIW and IT via bandpass filtering and to capture low-frequency variability in all quantities.

No near-inertial shadowing was observed. Instead, energetic near-inertial waves were observed at all depths, radiating both upward and downward. A strong upward internal tide beam, showing a pronounced spring–neap cycle, was also seen near the expected depth. Case studies of each of these are presented in depth and isopycnal-following coordinates. Except for immediately above the bottom and in the “beam,” where IT kinetic energy shows marked peaks, kinetic energy in the two bands is within a factor of 2 of each other. However, because of the redder NIW vertical wavenumber spectrum, NIW shear exceeded IT shear at all depths by a factor of 2–4. Dissipation rate was strongly enhanced in the bottom 1000 m and in the depth range of the internal tide beam. However, except for very near the bottom and possibly in one NIW event, no clear phase relationship was observed between dissipation rate and wave shear or strain, suggesting that turbulence occurs through a cascade process rather than by direct breaking at most locations.

Corresponding author address: Matthew H. Alford, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105. Email: malford@apl.washington.edu

Abstract

The relative strength and spatiotemporal structure of near-inertial waves (NIW) and internal tides (IT) are examined in the context of recent moored observations made 19 km south of Mendocino Escarpment, an abrupt ridge/step feature in the eastern Pacific. In addition to strong internal tide generation, steps and ridges give rise to the possibility of “shadowing,” wherein near-inertial energy is prevented from reaching depths beneath a characteristic intersecting the ridge top. A combination of two moored profilers and a long-range acoustic Doppler current profiler (ADCP) yielded velocity and shear measurements from 100 to 3640 m (60 m above bottom) and isopycnal depth, strain, and overturn-inferred turbulence dissipation rate from 1000 to 3640 m. Sampling intervals (20 min in the upper 1000 m and 1.5 h below that) were fast enough to minimize aliasing of higher-frequency internal-wave motions. The 67-day-long record is easily sufficient to isolate NIW and IT via bandpass filtering and to capture low-frequency variability in all quantities.

No near-inertial shadowing was observed. Instead, energetic near-inertial waves were observed at all depths, radiating both upward and downward. A strong upward internal tide beam, showing a pronounced spring–neap cycle, was also seen near the expected depth. Case studies of each of these are presented in depth and isopycnal-following coordinates. Except for immediately above the bottom and in the “beam,” where IT kinetic energy shows marked peaks, kinetic energy in the two bands is within a factor of 2 of each other. However, because of the redder NIW vertical wavenumber spectrum, NIW shear exceeded IT shear at all depths by a factor of 2–4. Dissipation rate was strongly enhanced in the bottom 1000 m and in the depth range of the internal tide beam. However, except for very near the bottom and possibly in one NIW event, no clear phase relationship was observed between dissipation rate and wave shear or strain, suggesting that turbulence occurs through a cascade process rather than by direct breaking at most locations.

Corresponding author address: Matthew H. Alford, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105. Email: malford@apl.washington.edu

Save
  • Alford, M. H., 2001a: Fine structure contamination: Observations and a model of a simple two-wave case. J. Phys. Oceanogr., 31 , 26452649.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2001b: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31 , 23592368.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003a: Energy available for ocean mixing redistributed through long-range propagation of internal waves. Nature, 423 , 159162.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003b: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30 , 1424. doi:10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and R. Pinkel, 2000: Observations of overturning in the thermocline: The context of ocean mixing. J. Phys. Oceanogr., 30 , 805832.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and M. Gregg, 2001: Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude. J. Geophys. Res., 106 , 1694716968.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and M. Whitmont, 2007: Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr., 37 , 20222037.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Z. Zhao, 2007: Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux. J. Phys. Oceanogr., 37 , 18291848.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. C. Gregg, and M. A. Merrifield, 2006: Structure, propagation and mixing of energetic baroclinic tides in Mamala Bay, Oahu, Hawaii. J. Phys. Oceanogr., 36 , 9971018.

    • Search Google Scholar
    • Export Citation
  • Althaus, A., E. Kunze, and T. Sanford, 2003: Internal tide radiation from Mendocino Escarpment. J. Phys. Oceanogr., 33 , 15101527.

  • Anderson, S. P., 1993: Shear, strain and thermohaline vertical fine structure in the upper ocean. Ph.D. thesis, University of California, San Diego, 143 pp.

  • Aucan, J., and M. Merrifield, 2008: Boundary mixing associated with tidal and near-inertial internal waves. J. Phys. Oceanogr., 38 , 12381252.

    • Search Google Scholar
    • Export Citation
  • Aucan, J., M. A. Merrifield, D. S. Luther, and P. Flament, 2006: Tidal mixing events on the deep flanks of Kaena Ridge, Hawaii. J. Phys. Oceanogr., 36 , 12021219.

    • Search Google Scholar
    • Export Citation
  • Cairns, J. L., and G. O. Williams, 1976: Internal wave observations from a midwater float, 2. J. Geophys. Res., 81 , 19431950.

  • Chiswell, S. M., 2003: Deep equatorward propagation of inertial oscillations. Geophys. Res. Lett., 30 , 1533. doi:10.1029/2003GL017057.

  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the mixed layer. J. Phys. Oceanogr., 15 , 10431059.

  • D’Asaro, E. A., C. E. Eriksen, M. D. Levine, C. A. Paulson, P. Niiler, and P. V. Meurs, 1995: Upper-ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr., 25 , 29092936.

    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87 , 96019613.

  • Doherty, K., D. Frye, S. Liberatore, and J. Toole, 1999: A moored profiling instrument. J. Atmos. Oceanic Technol., 16 , 18161829.

  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405 , 775778.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106 , 2247522502.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19 , 183204.

    • Search Google Scholar
    • Export Citation
  • Ferron, B. H., H. Mercier, K. Speer, A. Gargett, and K. Polzin, 1998: Mixing in the Romanche fracture zone. J. Phys. Oceanogr., 28 , 19291945.

    • Search Google Scholar
    • Export Citation
  • Foreman, M. G. G., 1996: Manual for tidal heights analysis and prediction. Institute of Ocean Sciences Pacific Marine Science Tech. Rep. 77-10, 66 pp.

    • Search Google Scholar
    • Export Citation
  • Galbraith, P. S., and D. E. Kelley, 1996: Identifying overturns in CTD profiles. J. Atmos. Oceanic Technol., 13 , 688702.

  • Gargett, A., and T. Garner, 2008: Determining Thorpe scales from ship-lowered CTD density profiles. J. Atmos. Oceanic Technol., 25 , 16571670.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 2001: What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31 , 962971.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. H. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80 , 291297.

  • Gonella, J., 1972: A rotary-component method for analysing meteorological and oceanographic vector time series. Deep-Sea Res., 19 , 833846.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94 , 96869698.

  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422 , 513515.

    • Search Google Scholar
    • Export Citation
  • Hebert, H., and J. Moum, 1994: Decay of a near-inertial wave. J. Phys. Oceanogr., 24 , 23342351.

  • Howard, L. N., 1961: Note on a paper of John W. Miles. J. Fluid Mech., 10 , 509512.

  • Ivey, G., K. Winters, and J. Koseff, 2008: Density stratification, turbulence, but how much mixing? Annu. Rev. Fluid Mech., 40 , 169184.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and C. Garrett, 2004: Effects of noise on Thorpe scales and runlengths. J. Phys. Oceanogr., 34 , 23592372.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kelly, S. M., J. D. Nash, and E. Kunze, 2010: Internal-tide energy over topography. J. Geophys. Res., 115 , C06014. doi:10.1029/2009JC005618.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36 , 11481164.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38 , 380399.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. H. Alford, R. Pinkel, R. C. Lien, and Y. J. Yang, 2011: The breaking and scattering of the internal tide on a continental slope. J. Phys. Oceanogr., in press.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006a: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36 , 15531576. Corrigendum, 36, 2350–2352.

    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., and T. B. Sanford, 1975: Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. J. Geophys. Res., 80 , 19751978.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. Watson, and C. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364 , 701703.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403 , 179182.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., and T. J. Boyd, 2006: Tidally forced internal waves and overturns observed on a slope: Results from HOME. J. Phys. Oceanogr., 36 , 11841201.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Lien, R-C., and M. C. Gregg, 2001: Observations of turbulence in a tidal beam and across a coastal ridge. J. Geophys. Res., 106 , 45754591.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., 1997: Turbulence measurement with a moored instrument. J. Atmos. Oceanic Technol., 14 , 143161.

  • Lueck, R. G., and J. J. Picklo, 1990: Thermal inertia of conductivity cells: Observations with a Sea-Bird cell. J. Atmos. Oceanic Technol., 7 , 756768.

    • Search Google Scholar
    • Export Citation
  • Mihaly, S. F., R. Thomson, and A. B. Rabinovich, 1998: Evidence for nonlinear interaction between internal waves of inertial and semidiurnal frequency. Geophys. Res. Lett., 25 , 12051208.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10 , 496508.

  • Mooers, C. N. K., 1970: The interaction of an internal tide with the frontal zone in a coastal upwelling region. Ph.D. thesis, Oregon State University, 480 pp.

  • Moum, J. N., 1996: Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res., 101 , 1409514109.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45 , 19772010.

  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: Estimating internal-wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22 , 15511570.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, E. Kunze, K. Martini, and S. Kelly, 2007: Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett., 34 , L01605. doi:10.1029/2006GL028170.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 1999: Response of the deep ocean internal wave field to traveling midlatitude storms as observed in long-term current measurements. J. Geophys. Res., 104 , 1098110989.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10 , 8389.

  • Pinkel, R., A. Plueddemann, and R. Williams, 1987: Internal wave observations from FLIP in MILDEX. J. Phys. Oceanogr., 17 , 17371757.

  • Polzin, K., 2004: A heuristic description of internal wave dynamics. J. Phys. Oceanogr., 34 , 214230.

  • Riedel, K. S., and A. Sidorenko, 1995: Minimum bias multiple taper spectral estimation. IEEE Trans. Signal Process., 43 , 188195.

  • Sherman, J. T., 1989: Observations of fine scale vertical shear and strain in the upper ocean. Ph.D. thesis, University of California, San Diego, 128 pp.

  • Silverthorne, K. E., and J. M. Toole, 2009: Seasonal kinetic energy variability of near-inertial motions. J. Phys. Oceanogr., 39 , 10351049.

    • Search Google Scholar
    • Export Citation
  • Simmons, H., 2004: A study of internal wave generation, evolution and propagation in a global baroclinic ocean model. International Arctic Research Center, University of Alaska Fairbanks, 19 pp. [Available online at http://denali.frontier.iarc.uaf.edu:8080/~hsimmons/IW/junkyard/YIP.pdf].

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277 , 19571962.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32 , 28822899.

  • Thorpe, S., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc. London, 286A , 125181.

  • Toole, J. M., 2007: Temporal characteristics of abyssal finescale motions above rough bathymetry. J. Phys. Oceanogr., 37 , 409427.

  • Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29 , 1239. doi:10.1029/2001GL014422.

    • Search Google Scholar
    • Export Citation
  • Winkel, D., 1998: Influences of mean shear in the Florida Current on turbulent production by internal waves. Ph.D. thesis, University of Washington, 138 pp.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36 , 281314.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1595 801 152
PDF Downloads 742 129 15