• Andreas, E. L., 1989: Thermal and size evolution of sea spray droplets. CRREL Rep. 89-11, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH, 37 pp. [NTIS ADA210484].

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., 1990: Time constants for the evolution of sea spray droplets. Tellus, 42B , 481497.

  • Andreas, E. L., 1992: Sea spray and the turbulent air–sea heat fluxes. J. Geophys. Res., 97 , 1142911441.

  • Andreas, E. L., 1995: The temperature of evaporating sea spray droplets. J. Atmos. Sci., 52 , 852862.

  • Andreas, E. L., 1996: Reply. J. Atmos. Sci., 53 , 16421645.

  • Andreas, E. L., 2002: A review of the sea spray generation function for the open ocean. Atmosphere–Ocean Interactions, Vol. 1, W. Perrie, Ed., WIT Press, 1–46.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., 2005a: Approximation formulas for the microphysical properties of saline droplets. Atmos. Res., 75 , 323345.

  • Andreas, E. L., 2005b: Handbook of Physical Constants and Functions for Use in Atmospheric Boundary Layer Studies. ERDC/CRREL Monogr. No. M-05-1, U.S. Army Cold Regions Research and Engineering Laboratory, 42 pp.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., , and J. DeCosmo, 1999: Sea spray production and influence on air–sea heat and moisture fluxes over the open ocean. Air–Sea Exchange: Physics, Chemistry and Dynamics, G. L. Geernaert, Ed., Kluwer, 327–362.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., , and K. A. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58 , 37413751.

  • Andreas, E. L., , and J. DeCosmo, 2002: The signature of sea spray in the HEXOS turbulent heat flux data. Bound.-Layer Meteor., 103 , 303333.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., , and S. Wang, 2007: Predicting significant wave height off the northeast coast of the United States. Ocean Eng., 34 , 13281335.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., , J. B. Edson, , E. C. Monahan, , M. P. Rouault, , and S. D. Smith, 1995: The spray contribution to net evaporation from the sea: A review of recent progress. Bound.-Layer Meteor., 72 , 352.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., , P. O. G. Persson, , and J. E. Hare, 2008: A bulk turbulent air–sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr., 38 , 15811596.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., 1982: The fluxes of specific enthalpy, sensible heat and latent heat near the earth’s surface. J. Atmos. Sci., 39 , 18891892.

    • Search Google Scholar
    • Export Citation
  • Chang, H-R., , and R. L. Grossman, 1999: Evaluation of bulk surface flux algorithms for light wind conditions using data from the Coupled Ocean–Atmosphere Response Experiment (COARE). Quart. J. Roy. Meteor. Soc., 125 , 15511588.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2003: The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33 , 561579.

  • DeCosmo, J., 1991: Air–sea exchange of momentum, heat and water vapor over whitecap sea states. Ph.D. dissertation, University of Washington, 212 pp.

  • DeCosmo, J., , K. B. Katsaros, , S. D. Smith, , R. J. Anderson, , W. A. Oost, , K. Bumke, , and H. Chadwick, 1996: Air–sea exchange of water vapor and sensible heat: The Humidity Exchange over the Sea (HEXOS) results. J. Geophys. Res., 101 , 1200112016.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., , B. K. Haus, , N. Reul, , W. J. Plant, , M. Stiassnie, , H. C. Graber, , O. B. Brown, , and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31 , L18306. doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., , J. A. Zhang, , J. R. French, , C. McCormick, , and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci., 64 , 11031115.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52 , 39693976.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , J. D. Kepert, , and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2 , 121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , D. P. Rogers, , J. B. Edson, , and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean-Atmosphere Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , J. E. Hare, , A. A. Grachev, , and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • French, J. R., , W. M. Drennan, , J. A. Zhang, , and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64 , 10891102.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Grant, A. L. M., , and P. Hignett, 1998: Aircraft observations of the surface energy balance in TOGA-COARE. Quart. J. Roy. Meteor. Soc., 124 , 101122.

    • Search Google Scholar
    • Export Citation
  • Jarosz, E., , D. A. Mitchell, , D. W. Wang, , and W. J. Teague, 2007: Bottom-up determination of air–sea momentum exchange under a major tropical cyclone. Science, 315 , 17071709.

    • Search Google Scholar
    • Export Citation
  • Joly, A., and Coauthors, 1997: The Fronts and Atlantic Storm-Track Experiment (FASTEX): Scientific objectives and experimental design. Bull. Amer. Meteor. Soc., 78 , 19171940.

    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., and Coauthors, 1994: Measurements of humidity and temperature in the marine environment during the HEXOS main experiment. J. Atmos. Oceanic Technol., 11 , 964981.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., , and J. A. Businger, 1994: Atmosphere–Ocean Interaction. 2nd ed. Oxford University Press, 362 pp.

  • Kudryavtsev, V. N., , and V. K. Makin, 2007: Aerodynamic roughness of the sea surface at high winds. Bound.-Layer Meteor., 125 , 289303.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., , K. B. Katsaros, , and J. A. Businger, 1979: Bulk parameterization of air–sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36 , 17221735.

    • Search Google Scholar
    • Export Citation
  • Perrie, W., , E. L. Andreas, , W. Zhang, , W. Li, , J. Gyakum, , and R. McTaggart-Cowan, 2005: Sea spray impacts on intensifying midlatitude cyclones. J. Atmos. Sci., 62 , 18671883.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., , J. E. Hare, , C. W. Fairall, , and W. D. Otto, 2005: Air–sea interaction processes in warm and cold sectors of extratropical cyclonic storms observed during FASTEX. Quart. J. Roy. Meteor. Soc., 131 , 877912.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., , P. J. Vickery, , and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422 , 279283.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., , J. F. Price, , J. B. Girton, , and D. C. Webb, 2007: Highly resolved observations and simulations of the ocean response to a hurricane. Geophys. Res. Lett., 34 , L13604. doi:10.1029/2007GL029679.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., and Coauthors, 1992: Sea surface wind stress and drag coefficients: The HEXOS results. Bound.-Layer Meteor., 60 , 109142.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1979: Buoyancy Effects in Fluids. Cambridge University Press, 368 pp.

  • Zedler, S. E., , P. P. Niiler, , D. Stammer, , E. Terrill, , and J. Morzel, 2009: Ocean’s response to Hurricane Frances and it implications for drag coefficient parameterization at high wind speeds. J. Geophys. Res., 114 , C04016. doi:10.1029/2008JC005205.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., , P. G. Black, , J. R. French, , and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35 , L14813. doi:10.1029/2008GL034374.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 37 37 16
PDF Downloads 32 32 19

Spray-Mediated Enthalpy Flux to the Atmosphere and Salt Flux to the Ocean in High Winds

View More View Less
  • 1 NorthWest Research Associates, Inc., Lebanon, New Hampshire
© Get Permissions
Restricted access

Abstract

Forecasts for the intensity and intensity changes of tropical cyclones have not improved as much as track forecasts. In high winds, two routes exist by which air and sea exchange heat and momentum: by spray-mediated processes and by interfacial transfer right at the air–sea interface, the only exchange route currently parameterized in most storm models. This manuscript quantifies two processes mediated by sea spray that could affect predictions of storm intensity when included in coupled ocean–atmosphere models. Because newly formed spray droplets cool rapidly to an equilibrium temperature that is lower than the air temperature, they cool the ocean when they reenter it, clearly transferring enthalpy from sea to air. These reentrant droplets proliferate in storm winds and are predicted to transfer enthalpy at a rate comparable to interfacial processes when the near-surface wind speed reaches 30 m s−1. Because reentrant spray droplets give up pure water to the atmosphere during their brief lifetime, they return to the sea saltier than the surface ocean water and thus also constitute an effective salt flux to the ocean (also related to a freshwater flux and a buoyancy flux). That is, reentrant spray droplets add enthalpy to the atmosphere to power storms and destabilize the ocean by increasing the salinity at the surface. Both processes can affect storm intensity. This manuscript demonstrates the magnitudes of the spray enthalpy and salt fluxes by combining a sophisticated microphysical model and data from the study of Humidity Exchange over the Sea (HEXOS) and the Fronts and Atlantic Storm-Tracks Experiment (FASTEX). It goes on to develop a fast algorithm for predicting these two fluxes in large-scale models.

Corresponding author address: Dr. Edgar L Andreas, NorthWest Research Associates, Inc. (Seattle Division), 25 Eagle Ridge, Lebanon, NH 03766-1900. Email: eandreas@nwra.com

Abstract

Forecasts for the intensity and intensity changes of tropical cyclones have not improved as much as track forecasts. In high winds, two routes exist by which air and sea exchange heat and momentum: by spray-mediated processes and by interfacial transfer right at the air–sea interface, the only exchange route currently parameterized in most storm models. This manuscript quantifies two processes mediated by sea spray that could affect predictions of storm intensity when included in coupled ocean–atmosphere models. Because newly formed spray droplets cool rapidly to an equilibrium temperature that is lower than the air temperature, they cool the ocean when they reenter it, clearly transferring enthalpy from sea to air. These reentrant droplets proliferate in storm winds and are predicted to transfer enthalpy at a rate comparable to interfacial processes when the near-surface wind speed reaches 30 m s−1. Because reentrant spray droplets give up pure water to the atmosphere during their brief lifetime, they return to the sea saltier than the surface ocean water and thus also constitute an effective salt flux to the ocean (also related to a freshwater flux and a buoyancy flux). That is, reentrant spray droplets add enthalpy to the atmosphere to power storms and destabilize the ocean by increasing the salinity at the surface. Both processes can affect storm intensity. This manuscript demonstrates the magnitudes of the spray enthalpy and salt fluxes by combining a sophisticated microphysical model and data from the study of Humidity Exchange over the Sea (HEXOS) and the Fronts and Atlantic Storm-Tracks Experiment (FASTEX). It goes on to develop a fast algorithm for predicting these two fluxes in large-scale models.

Corresponding author address: Dr. Edgar L Andreas, NorthWest Research Associates, Inc. (Seattle Division), 25 Eagle Ridge, Lebanon, NH 03766-1900. Email: eandreas@nwra.com

Save