• Alford, M. H., 2003: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30 , 1424. doi:10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Althaus, A. M., , E. Kunze, , and T. B. Sanford, 2003: Internal tide radiation from Mendocino Escarpment. J. Phys. Oceanogr., 33 , 15101527.

    • Search Google Scholar
    • Export Citation
  • Armi, L., 1978: Some evidence for boundary mixing in the deep ocean. J. Geophys. Res., 83 , (C4). 19711979.

  • Aucan, J., , and M. A. Merrifield, 2008: Boundary mixing associated with tidal and near-inertial internal waves. J. Phys. Oceanogr., 38 , 12381252.

    • Search Google Scholar
    • Export Citation
  • Aucan, J., , M. A. Merrifield, , D. S. Luther, , and P. Flament, 2006: Tidal mixing events on the deep flanks of Kaena Ridge, Hawaii. J. Phys. Oceanogr., 36 , 12021219.

    • Search Google Scholar
    • Export Citation
  • Baker, M. A., , and C. H. Gibson, 1987: Sampling turbulence in the stratified ocean—Statistical consequences of strong intermittency. J. Phys. Oceanogr., 17 , 18171836.

    • Search Google Scholar
    • Export Citation
  • Bell, T., 1975: Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 67 , 705722.

  • Bray, N. A., , and N. P. Fofonoff, 1981: Available potential energy for MODE eddies. J. Phys. Oceanogr., 11 , 3046.

  • Broersen, P., 2002: Automatic spectral analysis with time series models. IEEE Trans. Instrum. Meas., 51 , 211216.

  • Bryan, K., , and L. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res., 84 , (C5). 25032517.

  • Carter, G. S., , M. C. Gregg, , and M. A. Merrifield, 2006: Flow and mixing around a small seamount on Kaena Ridge, Hawaii. J. Phys. Oceanogr., 36 , 10361052.

    • Search Google Scholar
    • Export Citation
  • De Szoeke, R. A., , and A. F. Bennet, 1993: Microstructure fluxes across density surfaces. J. Phys. Oceanogr., 23 , 22542264.

  • Dewar, W. K., , R. J. Bingham, , R. L. Iverson, , D. P. Nowacek, , L. C. St. Laurent, , and P. H. Wiebe, 2006: Does the marine biosphere mix the ocean? J. Mar. Res., 64 , 541561.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , and R. D. Ray, 2001: Estimates of M-2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106 , (C10). 2247522502.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , and R. D. Ray, 2003: Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys. Res. Lett., 30 , 1907. doi:10.1029/2003GL017676.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., 1998: Internal wave reflection and mixing at Fieberling Guyot. J. Geophys. Res., 103 , (C2). 29772994.

  • Ferron, B., , H. Mercier, , K. Speer, , A. Gargett, , and K. Polzin, 1998: Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr., 28 , 19291945.

    • Search Google Scholar
    • Export Citation
  • Finnigan, T. D., , D. S. Luther, , and R. Lukas, 2002: Observations of enhanced diapycnal mixing near the Hawaiian ridge. J. Phys. Oceanogr., 32 , 29883002.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., 2003: Error budget of inverse box models: The North Atlantic. J. Atmos. Oceanic Technol., 20 , 16411655.

  • Ganachaud, A., , and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 , 453457.

    • Search Google Scholar
    • Export Citation
  • Garabato, A. C. N., , K. L. Polzin, , B. A. King, , K. J. Heywood, , and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303 , 210213.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., , and D. Gilbert, 1988: Estimates of vertical mixing by internal waves reflected of a sloping bottom. Small-Scale Turbulence and Mixing in the Ocean, J. Nihoul and B. Jamart, Eds., Elsevier, 405–424.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., , M. M. Yale, , and D. T. Sandwell, 2000: Global correlation of mesoscale ocean variability with seafloor roughness from satellite altimetry. Geophys. Res. Lett., 27 , 12511254.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V., , and K. Jancke, 1998: A new climatology for the world ocean. WOCE Hydrographic Program Special Analysis Centre Tech. Rep. 3, 40 pp.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1987: Diapycnal mixing in the thermocline—A review. J. Geophys. Res., 92 , (C5). 52495286.

  • Gregg, M. C., , and T. B. Sanford, 1980: Signatures of mixing from the Bermuda Slope, the Sargasso Sea and the Gulf Stream. J. Phys. Oceanogr., 10 , 105127.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., , H. E. Seim, , and D. B. Percival, 1993: Statistics of shear and turbulent dissipation profiles in random internal wave fields. J. Phys. Oceanogr., 23 , 17771799.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., , T. B. Sanford, , and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422 , 513515.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., , and N. Suginohara, 1999: Effects of locally enhanced vertical diffusivity over rough bathymetry on the world ocean circulation. J. Geophys. Res., 104 , (C10). 2336723374.

    • Search Google Scholar
    • Export Citation
  • Henyey, F., , J. Wright, , and S. Flatte, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91 , (C7). 96869698.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., , M. Nagasawa, , and Y. Niwa, 2006: Global mapping of diapycnal diffusivity in the deep ocean based on the results of expendable current profiler (XCP) surveys. Geophys. Res. Lett., 33 , L03611. doi:10.1029/2005GL025218.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., , and X. Z. Jin, 2002: Deep circulation in the South Atlantic induced by bottom-intensified mixing over the midocean ridge. J. Phys. Oceanogr., 32 , 11501164.

    • Search Google Scholar
    • Export Citation
  • Ivey, G. N., 1987: The role of boundary mixing in the deep ocean. J. Geophys. Res., 92 , (C11). 1187311878.

  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39 , 17561775.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., , and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28 , 811814.

  • Jayne, S. R., , L. C. St. Laurent, , and S. Gille, 2004: Connections between ocean bottom topography and Earth’s climate. Oceanography, 17 , 6574.

    • Search Google Scholar
    • Export Citation
  • Katsman, C. A., 2006: Impacts of localized mixing and topography on the stationary abyssal circulation. J. Phys. Oceanogr., 36 , 16601671.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36 , 11481164.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., , R. Pinkel, , and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge. J. Phys. Oceanogr., 38 , 380399.

    • Search Google Scholar
    • Export Citation
  • Koch-Larrouy, A., , G. Madec, , P. Bouruet-Aubertot, , T. Gerkema, , L. Bessieres, , and R. Molcard, 2007: On the transformation of Pacific Water into Indonesian Throughflow Water by internal tidal mixing. Geophys. Res. Lett., 34 , L04604. doi:10.1029/2006GL028405.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., , A. Griesel, , M. Montoya, , A. Levermann, , M. Hofmann, , and S. Rahmstorf, 2007: On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys., 45 , RG2001. doi:10.1029/2004RG000166.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., , and T. B. Sanford, 1996: Abyssal mixing: Where it is not. J. Phys. Oceanogr., 26 , 22862296.

  • Kunze, E., , and J. M. Toole, 1997: Tidally driven vorticity, diurnal shear, and turbulence atop Fieberling Seamount. J. Phys. Oceanogr., 27 , 26632693.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., , E. Firing, , J. M. Hummon, , T. K. Chereskin, , and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36 , 15531576.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., , E. T. Montgomery, , K. L. Polzin, , L. C. St. Laurent, , R. W. Schmitt, , and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403 , 179182.

    • Search Google Scholar
    • Export Citation
  • Lee, C., , E. Kunze, , T. B. Sanford, , J. D. Nash, , M. A. Merrifield, , and P. E. Holloway, 2006: Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. J. Phys. Oceanogr., 36 , 11661183.

    • Search Google Scholar
    • Export Citation
  • Legg, S., 2003: Internal wave breaking at variable topographic slopes. Near-Boundary Processes and Their Parameterization: Proc. 13th ‘Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 69–72. [Available online at http://www.soest.hawaii.edu/PubServices/2003pdfs/Legg.pdf].

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., , and T. J. Boyd, 2006: Tidally forced internal waves and overturns observed on a slope: Results from HOME. J. Phys. Oceanogr., 36 , 11841201.

    • Search Google Scholar
    • Export Citation
  • Lozovatsky, I. D., , H. J. S. Fernando, , and S. M. Shapolav, 2008: Deep-ocean mixing on the basin scale: Inference from North-Atlantic studies. Deep-Sea Res. I, 55 , 10751089.

    • Search Google Scholar
    • Export Citation
  • Lueck, R., , and R. Reid, 1984: On the production and dissipation of mechanical energy in the ocean. J. Geophys. Res., 89 , (C3). 34393445.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., , F. Santiago-Mandujano, , F. Bingham, , and A. Mantyla, 2001: Cold bottom water events observed in the Hawaii ocean time series: Implications for vertical mixing. Deep-Sea Res. I, 48 , 9951021.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., , and K. Speer, 2003: Large-scale vertical and horizontal circulation in the North Atlantic Ocean. J. Phys. Oceanogr., 33 , 19021920.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., , and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37 , 25502562.

  • Mackinnon, J. A., , and K. B. Winters, 2003: Spectral evolution of bottom-forced internal waves. Near-Boundary Processes and Their Parameterization: Proc. 13th ‘Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 73–83. [Available online at http://www.soest.hawaii.edu/PubServices/2003pdfs/Mackinnon.pdf].

    • Search Google Scholar
    • Export Citation
  • Mackinnon, J. A., , T. M. S. Johnston, , and R. Pinkel, 2008: Strong transport and mixing of deep water through the southwest Indian Ridge. Nature Geosci., 1 , 755758.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., , and A. C. Naveira Garabato, 2008: A conjecture on the role of bottom-enhanced diapycnal mixing in the parameterization of geostrophic eddies. J. Phys. Oceanogr., 38 , 16071613.

    • Search Google Scholar
    • Export Citation
  • Martin, J. P., , and D. L. Rudnick, 2007: Inferences and observations of turbulent dissipation and mixing in the upper ocean at the Hawaiian Ridge. J. Phys. Oceanogr., 37 , 476494.

    • Search Google Scholar
    • Export Citation
  • Martin, J. P., , D. L. Rudnick, , and R. Pinkel, 2006: Spatially broad observations of internal waves in the upper ocean at the Hawaiian Ridge. J. Phys. Oceanogr., 36 , 10851103.

    • Search Google Scholar
    • Export Citation
  • McComas, C. H., , and P. Müller, 1981: The dynamic balance of internal waves. J. Phys. Oceanogr., 11 , 970986.

  • McDougall, T. J., 1991: Parameterizing mixing in inverse models. Dynamics of Oceanic Internal Gravity Waves: Proc. ‘Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 355–386. [Available online at http://www.soest.hawaii.edu/PubServices/1991pdfs/McDougall.pdf].

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., , and P. E. Holloway, 2002: Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res., 107 , 3179. doi:10.1029/2001JC000996.

    • Search Google Scholar
    • Export Citation
  • Montgomery, E. T., 1998: Use of the High Resolution Profiler (HRP) in the Brazil Basin Tracer Release Experiment. Woods Hole Oceanographic Institution Tech. Rep. 98-08, 38 pp.

    • Search Google Scholar
    • Export Citation
  • Montgomery, E. T., , and J. M. Toole, 1993: Fine- and microstructure observations at Fieberling Guyot. R/V New Horizon cruise report. Woods Hole Oceanographic Institution Tech. Rep. 93-51, 27 pp.

    • Search Google Scholar
    • Export Citation
  • Morris, M. Y., , M. M. Hall, , L. C. St. Laurent, , and N. G. Hogg, 2001: Abyssal mixing in the Brazil Basin. J. Phys. Oceanogr., 31 , 33313348.

    • Search Google Scholar
    • Export Citation
  • Müller, P., , and N. Xu, 1992: Scattering of oceanic internal gravity-waves off random bottom topography. J. Phys. Oceanogr., 22 , 474488.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res. I, 13 , 207230.

  • Munk, W., , and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45 , 19772010.

  • Nash, J. D., , E. Kunze, , J. M. Toole, , and R. W. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34 , 11171134.

    • Search Google Scholar
    • Export Citation
  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12 , 256271.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local-rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10 , 8389.

  • Pinkel, R., 2008: The wavenumber-frequency spectrum of vortical and internal-wave shear in the western Arctic Ocean. J. Phys. Oceanogr., 38 , 277290.

    • Search Google Scholar
    • Export Citation
  • Polzin, K., 1992: Observations of turbulence, internal waves and background flows: An inquiry into relationships between scales of motion. Ph.D. dissertation, MIT–WHOI Joint Program in Oceanography, WHOI Tech. Rep. WHOI-92-39, 244 pp.

  • Polzin, K., 1999: A rough recipe for the energy balance of quasi-steady internal lee waves. Dynamics of Oceanic Internal Gravity Waves, II: ‘Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 117–128. [Available online at http://www.soest.hawaii.edu/PubServices/1999pdfs/Polzin.pdf].

    • Search Google Scholar
    • Export Citation
  • Polzin, K., 2004: Idealized solutions for the energy balance of the finescale internal wave field. J. Phys. Oceanogr., 34 , 231246.

  • Polzin, K., 2009: An abyssal recipe. Ocean Modell., 30 (4) 298309.

  • Polzin, K., , and E. Firing, 1997: Estimates of diapycnal mixing using LADCP and CTD data from I8S. International WOCE Newsletter, No. 29, WOCE International Project Office, Southampton, United Kingdom, 39–42.

    • Search Google Scholar
    • Export Citation
  • Polzin, K., , J. M. Toole, , and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25 , 306328.

    • Search Google Scholar
    • Export Citation
  • Polzin, K., , J. M. Toole, , J. R. Ledwell, , and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276 , 9396.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., , and R. Pinkel, 2006a: Baroclinic energy flux at the Hawaiian Ridge: Observations from the R/P FLIP. J. Phys. Oceanogr., 36 , 11041122.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., , and R. Pinkel, 2006b: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36 , 12201236.

  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian ridge. Science, 301 , 355357.

  • Saenko, O. A., 2006: The effect of localized mixing on the ocean circulation and time-dependent climate change. J. Phys. Oceanogr., 36 , 140160.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., 2008: On the strong seasonal currents in the deep ocean. J. Climate, 21 , 56425656.

  • Saenko, O. A., , and W. J. Merryfield, 2005: On the effect of topographically enhanced mixing on the global ocean circulation. J. Phys. Oceanogr., 35 , 826834.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1998: Large-scale circulation with locally enhanced vertical mixing. J. Phys. Oceanogr., 28 , 712726.

  • Seber, G. A. F., , and C. J. Wild, 1989: Nonlinear Regression. John Wiley and Sons, 768 pp.

  • Simmons, H. L., , R. W. Hallberg, , and B. K. Arbic, 2004a: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51 , 30433068.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., , S. R. Jayne, , L. C. St. Laurent, , and A. J. Weaver, 2004b: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6 , 245263.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., 2005: Spatial variability of mixing in the Southern Ocean. Geophys. Res. Lett., 32 , L18603. doi:10.1029/2005GL023568.

  • Smith, W. H. F., , and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277 , 19561962.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., 1999: Diapycnal advection by double diffusion and turbulence in the ocean. Ph.D dissertation, MIT–WHOI Joint Program in Oceanography, 139 pp.

  • St. Laurent, L., , and J. D. Nash, 2003: Internal tide energy dissipated near topography. Near-Boundary Processes and Their Parameterization: Proc. 13th ‘Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 45–58. [Available online at http://www.soest.hawaii.edu/PubServices/2003pdfs/Stlaurent.pdf].

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., , and H. Simmons, 2006: Estimates of power consumed by mixing in the ocean interior. J. Climate, 19 , 48774890.

  • St. Laurent, L., , J. M. Toole, , and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr., 31 , 34763495.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., , H. L. Simmons, , and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29 , 2106. doi:10.1029/2002GL015633.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2003: Shallow, intermediate and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33 , 530560.

    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., , L. C. St. Laurent, , K. G. Speer, , J. M. Toole, , and J. R. Ledwell, 2005: Mixing associated with sills in a canyon on the midocean ridge flank. J. Phys. Oceanogr., 35 , 13701381.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., 1998: Turbulent mixing in the ocean. Ocean Modeling and Parameterization, E. P. Chassignet and J. Veron, Eds., NATO Science Series C, Vol. 516, 171–187.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., 2007: Temporal characteristics of abyssal finescale motions above rough bathymetry. J. Phys. Oceanogr., 37 , 409427.

  • Toole, J. M., , R. W. Schmitt, , K. L. Polzin, , and E. Kunze, 1997: Near-boundary mixing above the flanks of a midlatitude seamount. J. Geophys. Res., 102 , (C1). 947959.

    • Search Google Scholar
    • Export Citation
  • Williams, P. D., , T. W. Haine, , and P. L. Read, 2008: Inertia–gravity waves emitted from balanced flow: Observations, properties, and consequences. J. Atmos. Sci., 65 , 35433556.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., , and R. Ferrari, 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36 , 281314.

    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., , and G. D. Egbert, 2006: Estimating open-ocean barotropic tidal dissipation: The Hawaiian Ridge. J. Phys. Oceanogr., 36 , 10191035.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. B., , R. W. Schmidt, , and R. X. Huang, 1999: The relative influence of diapycnal mixing and hydrologic forcing on the stability of the thermohaline circulation. J. Phys. Oceanogr., 29 , 10961108.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 3
PDF Downloads 512 512 505

On a Simple Empirical Parameterization of Topography-Catalyzed Diapycnal Mixing in the Abyssal Ocean

View More View Less
  • 1 School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

The global spatial distribution of the turbulent diapycnal diffusivity in the abyssal ocean is reexamined in light of the growing body of microstructure data revealing bottom-intensified turbulent mixing in regions of rough topography. A direct and nontrivial implication of the observed intensification is that the diapycnal diffusivity Kρ, is depth dependent and patchily distributed horizontally across the world’s oceans. Theoretical and observational studies show that bottom-intensified mixing is dependent upon a variety of energy sources and processes whose contributions to mixing are sufficiently complex that their physical parameterization is premature; only rudimentary parameterizations of tidally induced mixing have been attempted, although the tides likely provide no more than half of the mechanical energy available for diapycnal mixing in the abyssal ocean. Here, an empirical (and still rudimentary) parameterization of the spatially variable mean diffusivity Kρ based on a large collection of microstructure data from several oceanic regions, is provided. The parameterization, called the roughness diffusivity model (RDM), depends only on seafloor roughness and height above bottom and has the advantage of tacitly including a broad range of mixing processes catalyzed by the roughness or acuteness of the bottom topography. The study focuses in particular on the vertical structure of Kρ and shows that exponential decay, prominent in current diapycnal mixing parameterizations, does not provide an adequate representation of the mean vertical profile. Instead, an inverse square law decay with a scale height and maximum near-boundary value depending on topographic roughness is shown to provide a more realistic vertical structure. Resulting basin-averaged diffusivities based on the RDM, which increase from ∼3 × 10−5 m2 s−1 at 1-km depth to ∼1.5 × 10−4 m2 s−1 at 4 km, are roughly consistent with spatial averages derived from hydrographic data inversions, supporting the contention that strong, localized mixing plays a major role in maintaining the observed abyssal stratification. The power required to sustain the stratification in the abyssal ocean (defined as 40°S–48°N, 1–4-km depth) is shown to be sensitive to the spatial distribution of the mixing. The power consumption in this domain, given the parameterized bottom-intensified and horizontally heterogeneous diffusivity structure in the RDM, is estimated as approximately 0.37 TW (TW = 1012 W), considerably less than the canonical value of ∼2 TW estimated under the assumption of a uniform diffusivity of ∼10−4 m2 s−1 in the abyssal ocean.

Corresponding author address: Thomas Decloedt, Marine Sciences Bldg., 1000 Pope Rd., Honolulu, HI 96822. Email: decloedt@hawaii.edu

Abstract

The global spatial distribution of the turbulent diapycnal diffusivity in the abyssal ocean is reexamined in light of the growing body of microstructure data revealing bottom-intensified turbulent mixing in regions of rough topography. A direct and nontrivial implication of the observed intensification is that the diapycnal diffusivity Kρ, is depth dependent and patchily distributed horizontally across the world’s oceans. Theoretical and observational studies show that bottom-intensified mixing is dependent upon a variety of energy sources and processes whose contributions to mixing are sufficiently complex that their physical parameterization is premature; only rudimentary parameterizations of tidally induced mixing have been attempted, although the tides likely provide no more than half of the mechanical energy available for diapycnal mixing in the abyssal ocean. Here, an empirical (and still rudimentary) parameterization of the spatially variable mean diffusivity Kρ based on a large collection of microstructure data from several oceanic regions, is provided. The parameterization, called the roughness diffusivity model (RDM), depends only on seafloor roughness and height above bottom and has the advantage of tacitly including a broad range of mixing processes catalyzed by the roughness or acuteness of the bottom topography. The study focuses in particular on the vertical structure of Kρ and shows that exponential decay, prominent in current diapycnal mixing parameterizations, does not provide an adequate representation of the mean vertical profile. Instead, an inverse square law decay with a scale height and maximum near-boundary value depending on topographic roughness is shown to provide a more realistic vertical structure. Resulting basin-averaged diffusivities based on the RDM, which increase from ∼3 × 10−5 m2 s−1 at 1-km depth to ∼1.5 × 10−4 m2 s−1 at 4 km, are roughly consistent with spatial averages derived from hydrographic data inversions, supporting the contention that strong, localized mixing plays a major role in maintaining the observed abyssal stratification. The power required to sustain the stratification in the abyssal ocean (defined as 40°S–48°N, 1–4-km depth) is shown to be sensitive to the spatial distribution of the mixing. The power consumption in this domain, given the parameterized bottom-intensified and horizontally heterogeneous diffusivity structure in the RDM, is estimated as approximately 0.37 TW (TW = 1012 W), considerably less than the canonical value of ∼2 TW estimated under the assumption of a uniform diffusivity of ∼10−4 m2 s−1 in the abyssal ocean.

Corresponding author address: Thomas Decloedt, Marine Sciences Bldg., 1000 Pope Rd., Honolulu, HI 96822. Email: decloedt@hawaii.edu

Save