Circulation and Water Mass Modification in the Brazil–Malvinas Confluence

Loic Jullion School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

Search for other papers by Loic Jullion in
Current site
Google Scholar
PubMed
Close
,
Karen J. Heywood School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

Search for other papers by Karen J. Heywood in
Current site
Google Scholar
PubMed
Close
,
Alberto C. Naveira Garabato National Oceanography Centre, Southampton, Southampton, United Kingdom

Search for other papers by Alberto C. Naveira Garabato in
Current site
Google Scholar
PubMed
Close
, and
David P. Stevens School of Mathematics, University of East Anglia, Norwich, United Kingdom

Search for other papers by David P. Stevens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The confluence between the Brazil Current and the Malvinas Current [the Brazil–Malvinas Confluence (BMC)] in the Argentine Basin is characterized by a complicated thermohaline structure favoring the exchanges of mass, heat, and salt between the subtropical gyre and the Antarctic Circumpolar Current (ACC). Analysis of thermohaline properties of hydrographic sections in the BMC reveals strong interactions between the ACC and subtropical fronts. In the Subantarctic Front, Subantarctic Mode Water (SAMW), Antarctic Intermediate Water (AAIW), and Circumpolar Deep Water (CDW) warm (become saltier) by 0.4° (0.08), 0.3° (0.02), and 0.6°C (0.1), respectively. In the subtropical gyre, AAIW and North Atlantic Deep Water have cooled (freshened) by 0.4° (0.07) and 0.7°C (0.11), respectively.

To quantify those ACC–subtropical gyre interactions, a box inverse model surrounding the confluence is built. The model diagnoses a subduction of 16 ± 4 Sv (1 Sv ≡ 106 m3 s−1) of newly formed SAMW and AAIW under the subtropical gyre corresponding to about half of the total subduction rate of the South Atlantic found in previous studies. Cross-frontal heat (0.06 PW) and salt (2.4 × 1012 kg s−1) gains by the ACC in the BMC contribute to the meridional poleward heat and salt fluxes across the ACC. These estimates correspond to perhaps half of the total cross-ACC poleward heat flux. The authors’ results highlight the BMC as a key region in the subtropical–ACC exchanges.

Corresponding author address: Loic Jullion, National Oceanography Centre, Southampton, Ocean Observing and Climate, European Way, S014 3ZH Southampton, United Kingdom. Email: l.jullion@noc.soton.ac.uk

Abstract

The confluence between the Brazil Current and the Malvinas Current [the Brazil–Malvinas Confluence (BMC)] in the Argentine Basin is characterized by a complicated thermohaline structure favoring the exchanges of mass, heat, and salt between the subtropical gyre and the Antarctic Circumpolar Current (ACC). Analysis of thermohaline properties of hydrographic sections in the BMC reveals strong interactions between the ACC and subtropical fronts. In the Subantarctic Front, Subantarctic Mode Water (SAMW), Antarctic Intermediate Water (AAIW), and Circumpolar Deep Water (CDW) warm (become saltier) by 0.4° (0.08), 0.3° (0.02), and 0.6°C (0.1), respectively. In the subtropical gyre, AAIW and North Atlantic Deep Water have cooled (freshened) by 0.4° (0.07) and 0.7°C (0.11), respectively.

To quantify those ACC–subtropical gyre interactions, a box inverse model surrounding the confluence is built. The model diagnoses a subduction of 16 ± 4 Sv (1 Sv ≡ 106 m3 s−1) of newly formed SAMW and AAIW under the subtropical gyre corresponding to about half of the total subduction rate of the South Atlantic found in previous studies. Cross-frontal heat (0.06 PW) and salt (2.4 × 1012 kg s−1) gains by the ACC in the BMC contribute to the meridional poleward heat and salt fluxes across the ACC. These estimates correspond to perhaps half of the total cross-ACC poleward heat flux. The authors’ results highlight the BMC as a key region in the subtropical–ACC exchanges.

Corresponding author address: Loic Jullion, National Oceanography Centre, Southampton, Ocean Observing and Climate, European Way, S014 3ZH Southampton, United Kingdom. Email: l.jullion@noc.soton.ac.uk

Save
  • Arhan, M., K. J. Heywood, and B. A. King, 1999: The deep waters from the Southern Ocean at the entry to the Argentine Basin. Deep-Sea Res., 46 , 475499.

    • Search Google Scholar
    • Export Citation
  • Arhan, M., A. C. Naveira-Garabato, K. J. Heywood, and D. P. Stevens, 2002: The Antarctic Circumpolar Current between the Falkland Islands and South Georgia. J. Phys. Oceanogr., 32 , 19141931.

    • Search Google Scholar
    • Export Citation
  • Bianchi, A. A., C. F. Giulivi, and A. R. Piola, 1993: Mixing in the Brazil/Malvinas Confluence. Deep-Sea Res. I, 40 , 13451348.

  • Bianchi, A. A., A. R. Piola, and G. J. Collino, 2001: Evidence of double-diffusion in the Brazil-Malvinas Confluence. Deep-Sea Res. I, 49 , 4152.

    • Search Google Scholar
    • Export Citation
  • Boebel, O., C. Schmid, G. Podestá, and W. Zenk, 1999: Intermediate water in the Brazil-Malvinas Confluence Zone: A Lagrangian view. J. Geophys. Res., 104 , (C9). 2106321082.

    • Search Google Scholar
    • Export Citation
  • Boyer, T., S. Levitus, H. Garcia, R. A. Locarnini, C. Stephens, and J. Antonov, 2005: Objective analyses of annual, seasonal and monthly temperature and salinity for the World Ocean on a 0.25° grid. Int. J. Climatol., 25 , 931945.

    • Search Google Scholar
    • Export Citation
  • Campos, E., J. Miller, T. Müller, and R. Peterson, 1995: Physical oceanography of the southwest Atlantic Ocean. Oceanography, 8 , 8791.

    • Search Google Scholar
    • Export Citation
  • Davis, R., P. Killworth, and J. Blundell, 1996: Comparison of Autonomous Lagrangian Circulation Explorer and fine resolution Antarctic model results in the South Atlantic. J. Geophys. Res., 101 , (C1). 855884.

    • Search Google Scholar
    • Export Citation
  • Defant, A., 1941: Quantitative Untersuchungen zur Statik und Dynamik des Atlantischen Ozeans. Wiss. Ergeb. Dtsch. Atl. Exped. Meteor (Mainz), 6 , 191260.

    • Search Google Scholar
    • Export Citation
  • Dewar, B., 1998: Topography and barotropic transport control by bottom friction. J. Mar. Res., 56 , 295328.

  • Donners, J., S. S. Drijfhout, and W. Hazeleger, 2005: Water mass transformation and subduction in the South Atlantic. J. Phys. Oceanogr., 35 , 18411860.

    • Search Google Scholar
    • Export Citation
  • England, M., and V. Garçon, 1994: South Atlantic circulation in a World Ocean model. Ann. Geophys., 12 , 812825.

  • Fetter, A. F. H., and R. P. Matano, 2008: On the origins of the variability of the Malvinas Current in a global, eddy-permitting numerical simulation. J. Geophys. Res., 113 , C11018. doi:10.1029/2008JC004875.

    • Search Google Scholar
    • Export Citation
  • Fu, L. L., 2007: Interaction of mesoscale variability with large-scale waves in the Argentine Basin. J. Phys. Oceanogr., 37 , 787793.

  • Fu, L. L., B. Chang, and B. Qiu, 2001: 25-day period large-scale oscillations in the Argentine Basin revealed by the TOPEX/Poseidon altimeter. J. Phys. Oceanogr., 31 , 506517.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., 2003a: Error budget of inverse box models: The North Atlantic. J. Atmos. Oceanic Technol., 20 , 16411655.

  • Ganachaud, A., 2003b: Large-scale mass transports, water mass formation, and diffusivities estimated from World Ocean Circulation Experiment (WOCE) hydrographic data. J. Geophys. Res., 108 , 3213. doi:10.1029/2002JC001565.

    • Search Google Scholar
    • Export Citation
  • Garnier, E., J. Verron, and B. Barnier, 2003: Variability of the South Atlantic upper ocean circulation: A data assimilation experiment with 5 years of TOPEX/POSEIDON altimeter observations. Int. J. Remote Sens., 24 , 911934.

    • Search Google Scholar
    • Export Citation
  • Garzoli, S. L., and Z. Garaffo, 1989: Transports, frontal motion and eddies at the Brazil-Malvinas Confluence. Deep-Sea Res., 36 , 681703.

    • Search Google Scholar
    • Export Citation
  • Garzoli, S. L., and C. Giulivi, 1994: What forces the variability of the southwestern Atlantic boundary currents? Deep-Sea Res., 41 , 15271550.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 1999: Mass, heat and salt transport in the southeastern Pacific: A Circumpolar Current inverse model. J. Geophys. Res., 104 , (C3). 51915209.

    • Search Google Scholar
    • Export Citation
  • Goni, G. J., and I. Wainer, 2001: Investigation of the Brazil Current Front variability from altimeter data. J. Geophys. Res., 106 , 3111731128.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1989: Brazil-Malvinas Confluence—1984. Deep-Sea Res. I, 36 , 359384.

  • Gordon, A. L., R. F. Weiss, W. M. Smethie Jr., and M. J. Warner, 1992: Thermocline and intermediate water communication between the South Atlantic and Indian Ocean. J. Geophys. Res., 97 , 72237240.

    • Search Google Scholar
    • Export Citation
  • Gourestski, V. V., and K. P. Koltermann, 2004: WOCE Global Hydrographic climatology. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie Tech. Rep. 35, 55 pp.

    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., and B. A. King, 2002: Water masses and baroclinic transports in the South Atlantic and Southern Oceans. J. Mar. Res., 60 , 639676.

    • Search Google Scholar
    • Export Citation
  • Jackett, D., and T. McDougall, 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr., 27 , 237263.

  • Josey, S. A., E. C. Kent, and P. K. Taylor, 1998: The Southampton Oceanographic Center (SOC) ocean-atmosphere heat, momentum and freshwater fluxes atlas. Southampton Oceanographic Centre Rep. 6, 30 pp.

    • Search Google Scholar
    • Export Citation
  • Jullion, L., 2008: Water mass modification in the southwestern Atlantic. Ph.D. thesis, University of East Anglia, 243 pp.

  • Karstensen, J., and D. Quadfasel, 2002: Formation of Southern Hemisphere thermocline waters: Water mass conversion and subduction. J. Phys. Oceanogr., 32 , 30203038.

    • Search Google Scholar
    • Export Citation
  • Lozier, M., M. McCartney, and W. Owens, 1994: Anomalous anomalies in averaged hydrographic data. J. Phys. Oceanogr., 24 , 26242638.

  • Maamaatuaiahutapu, K., V. Garcon, C. Provost, M. Boulahdid, and A. P. Osiroff, 1992: Brazil-Malvinas confluence: Water mass composition. J. Geophys. Res., 97 , (C6). 94939505.

    • Search Google Scholar
    • Export Citation
  • Macdonald, A., 1998: The global oceanic circulation: A hydrographic estimate and regional analysis. Prog. Oceanogr., 41 , 281382.

  • Marshall, D., 1997: Subduction of water masses in an eddying ocean. J. Mar. Res., 55 , 201222.

  • Marshall, J., E. Shuckburgh, H. Jones, and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36 , 18061821.

    • Search Google Scholar
    • Export Citation
  • Matano, R., 1993: On the separation of the Brazil Current from the coast. J. Phys. Oceanogr., 23 , 7990.

  • McDonagh, E. L., and B. A. King, 2005: Oceanic fluxes in the South Atlantic. J. Phys. Oceanogr., 35 , 109122.

  • McDonagh, E. L., M. Arhan, and K. J. Heywood, 2002: On the circulation of bottom water in the region of the Vema Channel. Deep-Sea Res. I, 49 , 11191139.

    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., and S. R. Rintoul, 1997: Do box inverse models work? J. Phys. Oceanogr., 27 , 291308.

  • Memery, L., M. Arhan, X. A. Alvarez-Salgado, M-J. Messias, H. Mercier, C. G. Castro, and A. F. Rios, 2000: The water masses along the western boundary of the south and equatorial Atlantic. Prog. Oceanogr., 47 , 6998.

    • Search Google Scholar
    • Export Citation
  • Müller, T. J., Y. Ikeda, N. Zangenberg, and L. V. Nonato, 1998: Direct measurements of western boundary currents off Brazil between 20°S and 28°S. J. Geophys. Res., 103 , 54295437.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., D. P. Stevens, and K. J. Heywood, 2002: Modification and pathways of Southern Ocean deep waters in the Scotia Sea. Deep-Sea Res. I, 49 , 681705.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., D. P. Stevens, and K. J. Heywood, 2003: Water mass conversion, fluxes, and mixing in the Scotia Sea diagnosed by an inverse model. J. Phys. Oceanogr., 33 , 25652587.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., L. Jullion, D. Stevens, K. Heywood, and B. King, 2009: Variability of Subantarctic Mode Water and Antarctic Intermediate Water in Drake Passage during the late-twentieth and early-twenty-first centuries. J. Climate, 22 , 36613688.

    • Search Google Scholar
    • Export Citation
  • Núñez Riboni, I., O. Boebel, M. Ollitrault, Y. You, P. Richardson, and R. Davis, 2005: Lagrangian circulation of Antarctic Intermediate Water in the subtropical South Atlantic. Deep-Sea Res. II, 52 , 545564.

    • Search Google Scholar
    • Export Citation
  • Olson, D. B., G. P. Podestá, R. H. Evans, and O. B. Brown, 1988: Temporal variations in the separation of the Brazil and Malvinas Currents. Deep-Sea Res., 35 , 19711990.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth, and W. D. Nowlin, 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42 , 641673.

    • Search Google Scholar
    • Export Citation
  • Peterson, R. G., and T. Whitworth, 1989: The Subantarctic and Polar Fronts in relation to deep water masses through the southwestern Atlantic. J. Geophys. Res., 94 , (C8). 1081710838.

    • Search Google Scholar
    • Export Citation
  • Peterson, R. G., and L. Stramma, 1991: Upper-level circulation in the South Atlantic. Prog. Oceanogr., 26 , 173.

  • Piola, A. R., and D. T. Georgi, 1982: Circumpolar properties of Antarctic Intermediate Water and Subantarctic Mode Water. Deep-Sea Res., 29 , 687711.

    • Search Google Scholar
    • Export Citation
  • Provost, C., V. Garçon, and L. Medina Falcon, 1996: Hydrographic conditions in the surface layers over the slope-open ocean transition area near the Brazil-Malvinas Confluence during austral summer 1990. Cont. Shelf Res., 16 , 215235.

    • Search Google Scholar
    • Export Citation
  • Provost, C., C. Escoffier, K. Maamaatuaiahutapu, A. Kartavtseff, and V. Garçon, 1999: Subtropical mode waters in the South Atlantic. J. Geophys. Res., 104 , 2103321049.

    • Search Google Scholar
    • Export Citation
  • Reid, J. L., W. D. Nowlin Jr., and W. C. Patzert, 1977: On the characteristics and circulation of the southwestern Atlantic Ocean. J. Phys. Oceanogr., 7 , 6291.

    • Search Google Scholar
    • Export Citation
  • Saraceno, M., C. Provost, A. R. Piola, J. Bava, and A. Gagliardini, 2004: Brazil Malvinas Frontal System as seen from 9 years of Advanced Very High Resolution Radiometer data. J. Geophys. Res., 109 , C05027. doi:10.1029/2003JC002127.

    • Search Google Scholar
    • Export Citation
  • Saunders, P. M., and B. A. King, 1995a: Bottom currents derived from a shipboard ADCP on WOCE cruise A11 in the South Atlantic. J. Phys. Oceanogr., 25 , 329347.

    • Search Google Scholar
    • Export Citation
  • Saunders, P. M., and B. A. King, 1995b: Oceanic fluxes on the WOCE A11 section. J. Phys. Oceanogr., 25 , 19421958.

  • Schouten, M. W., and R. P. Matano, 2006: Formation and pathways of intermediate water in the Parallel Ocean Circulation Model’s Southern Ocean. J. Geophys. Res., 111 , C06015. doi:10.1029/2004JC002357.

    • Search Google Scholar
    • Export Citation
  • Siedler, G., T. Müller, R. Onken, M. Arhan, and H. Mercier, 1996: The zonal WOCE sections in the South Atlantic. The South Atlantic: Present and Past Circulation, G. Wefer et al., Eds., Springer-Verlag, 105–120.

    • Search Google Scholar
    • Export Citation
  • SIO, 1992: Chemical, physical and CTD data reports, Leg 4, 7 December 1988-15 December 1989; Leg 5, 23 January 1989-8 March 1989; R/V Melville. Scripps Institution of Oceanography Save Data Rep., 729 pp.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2000: Estimates of area-averaged diapycnal fluxes from basin-scale budgets. J. Phys. Oceanogr., 30 , 23202349.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001a: Circulation, renewal and modification of Antarctic mode and intermediate water. J. Phys. Oceanogr., 31 , 10051031.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001b: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31 , 143173.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277 , 19561962.

    • Search Google Scholar
    • Export Citation
  • Spadone, A., and C. Provost, 2009: Variations in the Malvinas Current volume transport since 1992. J. Geophys. Res., 114 , C02002. doi:10.1029/2008JC004882.

    • Search Google Scholar
    • Export Citation
  • Sun, C., and D. R. Watts, 2002: Heat flux carried by the Antarctic Circumpolar Current mean flow. J. Geophys. Res., 107 , 3119. doi:10.1029/2001JC001187.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 1996: Antarctic Intermediate Water in the South Atlantic. The South Atlantic: Present and Past Circulation, G. G. Wefer, W. H. Berger, and D. Webb, Eds., Springer-Verlag, 219–238.

    • Search Google Scholar
    • Export Citation
  • Tanaka, Y., and H. Hasumi, 2008: Injection of Antarctic Intermediate Water into the Atlantic subtropical gyre in an eddy resolving ocean model. Geophys. Res Lett., 35 , L11601. doi:10.1029/2007GL032915.

    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., L. Talley, and M. McCartney, 1994: Water mass distributions in the western South Atlantic; A section from South Georgia Island (54°S) northward across the equator. J. Mar. Res., 52 , 5581.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and K. Speer, 1994: A study of water mass transformation in the Mediterranean Sea: Analysis of climatological data and a simple three-box model. Dyn. Atmos. Oceans, 21 , 5382.

    • Search Google Scholar
    • Export Citation
  • Vivier, F., and C. Provost, 1999: Direct velocity measurements in the Malvinas current. J. Geophys. Res., 104 , (C9). 2108321103.

  • Wainer, I., P. Gent, and P. Goni, 2000: Annual cycle of the Brazil-Malvinas Confluence region in the National Center for Atmospheric Research climate system model. J. Geophys. Res., 105 , 2616726177.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., F. Vivier, S. Gille, and H. A. Dijkstra, 2008a: Multiple oscillatory modes of the Argentine Basin. Part I: Statistical analysis. J. Phys. Oceanogr., 37 , 28552868.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., F. Vivier, S. Gille, and H. A. Dijkstra, 2008b: Multiple oscillatory modes of the Argentine Basin. Part II: The spectral origin of basin modes. J. Phys. Oceanogr., 37 , 28692881.

    • Search Google Scholar
    • Export Citation
  • Wienders, N., M. Arhan, and H. Mercier, 2000: Circulation at the western boundary of the south and equatorial Atlantic: Exchanges with the ocean interior. J. Mar. Res., 58 , 10071039.

    • Search Google Scholar
    • Export Citation
  • Wilson, H., and N. Rees, 2000: Classification of mesocale features in the Brazil-Falkland Current confluence zone. Prog. Oceanogr., 45 , 415426.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1978: The North Atlantic general circulation west of 50°W determined by inverse methods. Rev. Geophys. Space Phys., 16 , 583620.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Inverse Circulation Inverse Problem. Cambridge University Press, 442 pp.

  • Zemba, J. C., 1994: The structure and transport of the Brazil Current between 26° and 32°S. Ph.D. thesis, Woods Hole Oceanographic Institution, 160 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2539 357 74
PDF Downloads 514 54 2