Annual Reversal of the Equatorial Intermediate Current in the Pacific: Observations and Model Diagnostics

Frédéric Marin Université de Toulouse, UPS (OMP-PCA), and IRD, LEGOS, Toulouse, France

Search for other papers by Frédéric Marin in
Current site
Google Scholar
PubMed
Close
,
Elodie Kestenare Université de Toulouse, UPS (OMP-PCA), and IRD, LEGOS, Toulouse, France

Search for other papers by Elodie Kestenare in
Current site
Google Scholar
PubMed
Close
,
Thierry Delcroix Université de Toulouse, UPS (OMP-PCA), and IRD, LEGOS, Toulouse, France

Search for other papers by Thierry Delcroix in
Current site
Google Scholar
PubMed
Close
,
Fabien Durand Université de Toulouse, UPS (OMP-PCA), and IRD, LEGOS, Toulouse, France

Search for other papers by Fabien Durand in
Current site
Google Scholar
PubMed
Close
,
Sophie Cravatte Université de Toulouse, UPS (OMP-PCA), and IRD, LEGOS, Toulouse, France

Search for other papers by Sophie Cravatte in
Current site
Google Scholar
PubMed
Close
,
Gérard Eldin Université de Toulouse, UPS (OMP-PCA), and IRD, LEGOS, Toulouse, France

Search for other papers by Gérard Eldin in
Current site
Google Scholar
PubMed
Close
, and
Romain Bourdallé-Badie GIP Mercator Océan, Ramonville St. Agne, and CERFACS, Toulouse, France

Search for other papers by Romain Bourdallé-Badie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A large reversal of zonal transport below the thermocline was observed over a period of 6 months in the western Pacific Ocean between 2°S and the equator [from 26.2 Sv (1 Sv ≡ 106 m3 s−1) eastward in October 1999 to 28.6 Sv westward in April 2000]. To document this reversal and assess its origin, an unprecedented collection of ADCP observations of zonal currents (2004–06), together with a realistic OGCM simulation of the tropical Pacific, was analyzed. The results of this study indicate that this reversal is the signature of intense annual variability in the subsurface zonal circulation at the equator, at the level of the Equatorial Intermediate Current (EIC) and the Lower Equatorial Intermediate Current (L-EIC). In this study, the EIC and the L-EIC are both shown to reverse seasonally to eastward currents in boreal spring (and winter for the L-EIC) over a large depth range extending from 300 m to at least 1200 m. The peak-to-peak amplitude of the annual cycle of subthermocline zonal currents at 165°E in the model is ∼30 cm s−1 at the depth of the EIC, and ∼20 cm s−1 at the depth of the L-EIC, corresponding to a mass transport change as large as ∼100 Sv for the annual cycle of near-equatorial zonal transport integrated between 2°S and 2°N and between 410- and 1340-m depths. Zonal circulations on both sides of the equator (roughly within 2° and 5.5° in latitude) partially compensate for the large transport variability. The main characteristics of the annual variability of middepth modeled currents and subsurface temperature (e.g., zonal and vertical phase velocities, meridional structure) are consistent, in the OGCM simulation, with the presence, beneath the thermocline, of a vertically propagating equatorial Rossby wave forced by the westward-propagating component of the annual equatorial zonal wind stress. Interannual modulation of the annual variability in subthermocline equatorial transport is discussed.

Corresponding author address: Frédéric Marin, Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS), UMR 5566 CNES/CNRS/IRD/UPS, 14, Ave. Edouard Belin, 31400 Toulouse, France. Email: frederic.marin@legos.obs-mip.fr

Abstract

A large reversal of zonal transport below the thermocline was observed over a period of 6 months in the western Pacific Ocean between 2°S and the equator [from 26.2 Sv (1 Sv ≡ 106 m3 s−1) eastward in October 1999 to 28.6 Sv westward in April 2000]. To document this reversal and assess its origin, an unprecedented collection of ADCP observations of zonal currents (2004–06), together with a realistic OGCM simulation of the tropical Pacific, was analyzed. The results of this study indicate that this reversal is the signature of intense annual variability in the subsurface zonal circulation at the equator, at the level of the Equatorial Intermediate Current (EIC) and the Lower Equatorial Intermediate Current (L-EIC). In this study, the EIC and the L-EIC are both shown to reverse seasonally to eastward currents in boreal spring (and winter for the L-EIC) over a large depth range extending from 300 m to at least 1200 m. The peak-to-peak amplitude of the annual cycle of subthermocline zonal currents at 165°E in the model is ∼30 cm s−1 at the depth of the EIC, and ∼20 cm s−1 at the depth of the L-EIC, corresponding to a mass transport change as large as ∼100 Sv for the annual cycle of near-equatorial zonal transport integrated between 2°S and 2°N and between 410- and 1340-m depths. Zonal circulations on both sides of the equator (roughly within 2° and 5.5° in latitude) partially compensate for the large transport variability. The main characteristics of the annual variability of middepth modeled currents and subsurface temperature (e.g., zonal and vertical phase velocities, meridional structure) are consistent, in the OGCM simulation, with the presence, beneath the thermocline, of a vertically propagating equatorial Rossby wave forced by the westward-propagating component of the annual equatorial zonal wind stress. Interannual modulation of the annual variability in subthermocline equatorial transport is discussed.

Corresponding author address: Frédéric Marin, Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS), UMR 5566 CNES/CNRS/IRD/UPS, 14, Ave. Edouard Belin, 31400 Toulouse, France. Email: frederic.marin@legos.obs-mip.fr

Save
  • Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, 182 pp.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 1966: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J. Comput. Phys., 1 , 119143.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1981: A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Wea. Rev., 109 , 1836.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., 1983: Interaction of the monsoon and Pacific trade-wind system at interannual time scales. Part I: The equatorial zone. Mon. Wea. Rev., 111 , 756773.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., and Coauthors, 2006: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn., 56 , 543567.

    • Search Google Scholar
    • Export Citation
  • Black, A., and C. Black, 1853: Black’s General Atlas of the World. A. and C. Black, 70 pp. + maps.

  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23 , 13631388.

    • Search Google Scholar
    • Export Citation
  • Bonjean, F., and G. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32 , 29382954.

    • Search Google Scholar
    • Export Citation
  • Brandt, P., and C. Eden, 2005: Annual cycle and interannual variability of the mid-depth tropical Atlantic Ocean. Deep-Sea Res. I, 52 , 199219.

    • Search Google Scholar
    • Export Citation
  • Burkov, V. A., and I. M. Ovchinnikov, 1960: Structure of zonal streams and meridional circulation in the central Pacific during the Northern Hemisphere winter (in Russian). Tr. Instit. Okeanolog. Akad. Nauk. SSSR, 40 , 93107.

    • Search Google Scholar
    • Export Citation
  • Cromwell, T. R., R. B. Montgomery, and E. D. Stroup, 1954: Equatorial undercurrent in Pacific Ocean revealed by new methods. Science, 119 , 648649.

    • Search Google Scholar
    • Export Citation
  • Delcroix, T., and C. Hénin, 1988: Observations of the Equatorial Intermediate Current in the western Pacific Ocean (165°E). J. Phys. Oceanogr., 18 , 363366.

    • Search Google Scholar
    • Export Citation
  • Delcroix, T., G. Eldin, and C. Hénin, 1987: Upper ocean water masses and transports in the western tropical Pacific (165°E). J. Phys. Oceanogr., 17 , 22482262.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., and G. Reverdin, 2000: Vertically propagating annual and interannual variability in an OGCM simulation of the tropical Pacific Ocean in 1985–94. J. Phys. Oceanogr., 30 , 15621581.

    • Search Google Scholar
    • Export Citation
  • Eldin, G., A. Morlière, and G. Reverdin, 1992: Acoustic Doppler current profiling along the Pacific equator from 95°W to 165°E. Geophys. Res. Lett., 19 , 913916.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., 1981: Deep currents and their interpretation as equatorial waves in the western Pacific Ocean. J. Phys. Oceanogr., 11 , 4870.

    • Search Google Scholar
    • Export Citation
  • Firing, E., 1987: Deep zonal currents in the central equatorial Pacific. J. Mar. Res., 45 , 791812.

  • Firing, E., 1988: Shallow equatorial jets. J. Geophys. Res., 93 , 92139222.

  • Firing, E., R. Lukas, J. Sadler, and K. Wyrtki, 1983: Equatorial undercurrent disappears during 1982–83 El Niño. Science, 222 , 11211123.

    • Search Google Scholar
    • Export Citation
  • Firing, E., S. E. Wijfells, and P. Hacker, 1998: Equatorial subthermocline currents across the Pacific. J. Geophys. Res., 103 , 2141321423.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., G. Eldin, R. Chuchla, M. Rodier, A. Lapetite, F. Gallois, and C. Dupouy, 2006: Rapport de la mission FRONTALIS 2 à bord du Navire Océanographique l’Alis du 2 au 30 avril 2004. Rapports de Missions, Sciences de la Mer, Océanographie Physique, Vol. 8, Centre IRD de Nouméa, 185 pp.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. R. Luyten, 1985: How much energy propagates vertically in the equatorial oceans? J. Phys. Oceanogr., 15 , 9971007.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., J-M. Campin, E. Deleersnijder, T. Fichefet, P-P. Mathieu, M. A. M. Maqueda, and B. Tartinville, 2001: Description of the CLIO model version 3.0. Institut d’Astronomie et de Géophysique Georges Lemaitre Science Rep. 2002/3, 49 pp.

    • Search Google Scholar
    • Export Citation
  • Gouriou, Y., and J. M. Toole, 1993: Mean circulation of the upper layers of the western equatorial Pacific Ocean. J. Geophys. Res., 98 , 2249522520.

    • Search Google Scholar
    • Export Citation
  • Gouriou, Y., T. Delcroix, and G. Eldin, 2006: Upper and intermediate circulation in the western equatorial Pacific Ocean in October 1999 and April 2000. Geophys. Res. Lett., 33 , L10603. doi:10.1029/2006GL025941.

    • Search Google Scholar
    • Export Citation
  • Halpern, D. A., 1980: A Pacific equatorial temperature section from 172°E to 110°W during winter and spring 1979. Deep-Sea Res., 27 , 931940.

    • Search Google Scholar
    • Export Citation
  • Hayes, S. P., J. M. Toole, and L. J. Mangum, 1983: Water-mass and transport variability at 110°W in the equatorial Pacific. J. Phys. Oceanogr., 13 , 153168.

    • Search Google Scholar
    • Export Citation
  • Hisard, P., and P. Rual, 1970: Courant equatorial intermédiaire de l’Océan Pacifique et contre-courants adjacents. Cah. ORSTOM Sér. Océanogr., 8 , 2145.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., B. M. Sloyan, W. S. Kessler, and K. E. McTaggart, 2002: Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s. Prog. Oceanogr., 52 , 3161.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and B. A. Taft, 1987: Dynamic heights and zonal geostrophic transports in the central tropical Pacific during 1979–1984. J. Phys. Oceanogr., 17 , 97122.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and J. P. McCreary, 1993: The annual wind-driven Rossby wave in the subthermocline equatorial Pacific. J. Phys. Oceanogr., 23 , 11921207.

    • Search Google Scholar
    • Export Citation
  • Knauss, J. A., 1963: Equatorial current systems. The Sea, M. N. Hill, Ed., The Composition of Sea-Water and Comparative and Descriptive Oceanography, Vol. 2, John Wiley and Sons, 235–252.

    • Search Google Scholar
    • Export Citation
  • Leetmaa, A., and P. F. Spain, 1981: Results from a velocity transect along the equator from 125° to 159°W. J. Phys. Oceanogr., 11 , 10301033.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, 182 pp.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Firing, 1985: The annual Rossby wave in the central equatorial Pacific Ocean. J. Phys. Oceanogr., 15 , 5567.

  • Madec, G., 2008: NEMO ocean engine. Institut Pierre-Simon Laplace Note du Pôle de Modélisation 27, 205 pp.

  • Maes, C., and Coauthors, 2006: Rapports de la mission FRONTALIS 3 à bord du N.O Alis du 22 avril au 19 mai 2005, 22S-2N, 161E-172E. Rapports de Mission, Sciences de la Mer, Océanographie Physique, Vol. 20, Centre IRD de Nouméa, 167 pp.

    • Search Google Scholar
    • Export Citation
  • Magnier, Y., H. Rotschi, P. Rual, and C. Colin, 1973: Equatorial circulation in the western Pacific (170°E). Prog. Oceanogr., 6 , 2946.

    • Search Google Scholar
    • Export Citation
  • Picaut, J., and R. Tournier, 1991: Monitoring the 1979–1985 equatorial Pacific current transports with expendable bathythermograph data. J. Geophys. Res., 96 , 32633277.

    • Search Google Scholar
    • Export Citation
  • Puls, C., 1895: Oberflächentemperaturen und Stromungsverhaltnisse des Äquatorialgurtels des Stillen Ozeans. Dtsch. Arch. Seewarte, 18 , 138.

    • Search Google Scholar
    • Export Citation
  • Reid, J. L., 1961: On the geostrophic flow at the surface of the Pacific Ocean with respect to the 1000-db surface. Tellus, 13 , 489502.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., C. Frankignoul, E. Kestenare, and M. J. McPhaden, 1994: Seasonal variability in the surface currents of the equatorial Pacific. J. Geophys. Res., 99 , 2032320344.

    • Search Google Scholar
    • Export Citation
  • Rothstein, L. M., D. W. Moore, and J. P. McCreary, 1985: Interior reflections of a periodically forced equatorial Kelvin wave. J. Phys. Oceanogr., 15 , 985996.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., and G. Madec, 2000: Salt conservation, free surface and varying volume: new formulation for ocean GCMs. J. Geophys. Res., 105 , 2392723942.

    • Search Google Scholar
    • Export Citation
  • Rowe, G. D., E. Firing, and G. C. Johnson, 2000: Pacific equatorial subsurface countercurrent velocity, transport, and potential vorticity. J. Phys. Oceanogr., 30 , 11721187.

    • Search Google Scholar
    • Export Citation
  • Sudre, J., and R. A. Morrow, 2008: Global surface currents: high-resolution product for investigating ocean dynamics. Ocean Dyn., 58 , 101118.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H., M. Johnson, and R. Fleming, 1942: The Oceans: Their Physics, Chemistry and General Biology. Prentice-Hall, 1087 pp.

  • Thierry, V., A. M. Treguier, and H. Mercier, 2004: Numerical study of the annual and semi-annual fluctuations in the deep equatorial Atlantic Ocean. Ocean Modell., 6 , 130.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1974: Sea level and the seasonal fluctuations of the equatorial currents in the western Pacific. J. Phys. Oceanogr., 4 , 91103.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., and B. Kilonsky, 1984: Mean water and current structure during the Hawaii-to-Tahiti. J. Phys. Oceanogr., 14 , 242254.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 468 171 53
PDF Downloads 289 85 0