Abstract
Hood Canal, a long fjord in Washington State, has strong tides but limited deep-water renewal landward of a complex constriction. Tide-resolving hydrographic and velocity observations at the constriction, with a depth-cycling towed body, varied markedly during three consecutive years, partly because of stratification variations. To determine whether hydraulic control is generally important and to interpret observations of lee waves, blocking, and other features, hydraulic criticality is estimated over full tidal cycles for channel wide internal wave modes 1, 2, and 3, at five cross-channel sections, using mode speeds from the extended Taylor–Goldstein equation. These modes were strongly supercritical during most of ebb and flood on the gentle seaward sill face and for part of flood at the base of the steep landward side. Examining local criticality along the thalweg found repeated changes between mode 1 being critical and supercritical approaching the sill crest during flood, unsurprising given local minima and maxima in the cross-sectional area, with the sill crest near a maximum. Density crossing the sill sometimes resembled an overflow with an internal hydraulic control at the sill, followed by a hydraulic jump or lee wave. Long-wave speeds, however, suggest cross waves, particularly along the shallower gentler side, where flow downstream of a large-amplitude wave was uniformly supercritical. Supercritical approaching the sill, peak ebb was critical to mode 1 and supercritical to modes 2 and 3 at the base while forming a sluggish dome of dense water over the sill. Full interpretation exceeds observations and existing theory.
Corresponding author address: M. C. Gregg, Applied Physics Lab., University of Washington, 1013 NE 40th St., Seattle, WA 98105. Email: gregg@apl.washington.edu