• Babin, S. M., , J. A. Carton, , T. D. Dickey, , and J. D. Wiggert, 2004: Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J. Geophys. Res., 109 , C03043. doi:10.1029/2003JC001938.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer experiment. Bull. Amer. Meteor. Soc., 88 , 357374.

    • Search Google Scholar
    • Export Citation
  • Chang, S. W., 1985: Deep ocean response to hurricane as revealed by an ocean model with free surface. Part I: Axisymmetric case. J. Phys. Oceanogr., 15 , 18471858.

    • Search Google Scholar
    • Export Citation
  • Chereskin, T. K., , and D. Roemmich, 1991: A comparison of measured and wind-derived Ekman transport at 11°N in the Atlantic Ocean. J. Phys. Oceanogr., 21 , 869878.

    • Search Google Scholar
    • Export Citation
  • Coleman, G. N., , J. H. Ferziger, , and P. R. Spalart, 1990: A numerical study of the turbulent Ekman layer. J. Fluid Mech., 213 , 313348.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., , B. K. Haus, , N. Reul, , W. J. Plant, , M. Stianssnie, , H. C. Graber, , O. B. Brown, , and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31 , L18306. doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31 , 75104.

  • Geisler, J. E., 1970: Linear theory of the response of a two layer ocean to a moving hurricane. Geophys. Fluid Dyn., 1 , 249272.

  • Gierach, M. M., , and B. Subrahmanyam, 2008: Biophysical responses of the upper ocean to major Gulf of Mexico hurricanes in 2005. J. Geophys. Res., 113 , C04029. doi:10.1029/2007JC004419.

    • Search Google Scholar
    • Export Citation
  • Ginis, I., , and G. Sutyrin, 1995: Hurricane-generated depth-averaged currents and sea surface elevation. J. Phys. Oceanogr., 25 , 12181242.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 1983: On the response of the ocean to a moving storm: The nonlinear dynamics. J. Phys. Oceanogr., 13 , 357367.

  • Greatbatch, R. J., 1984: On the response of the ocean to a moving storm: Parameters and scales. J. Phys. Oceanogr., 14 , 5978.

  • Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108 , 12121218.

  • Huang, R. X., , C. J. Huang, , and W. Wang, 2007: Dynamical roles of mixed layer in regulating the meridional mass/heat fluxes. J. Geophys. Res., 112 , C05036. doi:10.1029/2006JC004046.

    • Search Google Scholar
    • Export Citation
  • Jansen, M., , and R. Ferrari, 2009: Impact of the latitudinal distribution of tropical cyclones on ocean heat transport. Geophys. Res. Lett., 36 , L06604. doi:10.1029/2008GL036796.

    • Search Google Scholar
    • Export Citation
  • Liu, L. L., , W. Wang, , and R. X. Huang, 2008: The mechanical energy input to the ocean induced by tropical cyclones. J. Phys. Oceanogr., 38 , 12531266.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1965: The response of a stratified ocean to stationary or moving wind systems. Deep-Sea Res., 12 , 923973.

  • Marshall, J., , A. Adcroft, , C. Hill, , L. Perelman, , and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 , 57535766.

    • Search Google Scholar
    • Export Citation
  • Morozov, E. G., , and M. G. Velarde, 2008: Inertial oscillations as deep ocean response to hurricanes. J. Oceanogr., 64 , 495509.

  • Powell, M., , P. Vickery, , and T. Reinhold, 2003: Reduced drag coefficients for high wind speeds in tropical cyclones. Nature, 422 , 279283.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11 , 153175.

  • Price, J. F., 1983: Internal wave wake of a moving storm. Part I: Scales, energy budget and observations. J. Phys. Oceanogr., 13 , 949965.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., , and M. A. Sundermeyer, 1999: Stratified Ekman layers. J. Geophys. Res., 104 , 2046720494.

  • Price, J. F., , R. A. Weller, , and R. R. Schudlich, 1987: Wind-driven ocean currents and Ekman transport. Science, 238 , 15341538.

  • Price, J. F., , T. B. Sanford, , and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24 , 233260.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., , and R. L. Elsberry, 1987: Near-inertial ocean current response to Hurricane Frederic. J. Phys. Oceanogr., 17 , 12491269.

  • Shay, L. K., , R. L. Elsberry, , and P. G. Black, 1989: Vertical structure of the ocean current response to a hurricane. J. Phys. Oceanogr., 19 , 649669.

    • Search Google Scholar
    • Export Citation
  • Shen, B-W., , R. Atlas, , O. Reale, , S-J. Lin, , J-D. Churn, , J. Chang, , C. Hence, , and J-L. Li, 2006: Hurricane forecasts with a global meso scale-resolving model: Preliminary results with Hurricane Katrina (2005). Geophys. Res. Lett., 33 , L13813. doi:10.1029/2006GL026143.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., , and M. Huber, 2007: Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447 , 577580. doi:10.1038/nature05785.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , and R. X. Huang, 2004: Wind energy input to the Ekman layer. J. Phys. Oceanogr., 34 , 12671275.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 5
PDF Downloads 31 31 3

The Three-Dimensional Steady Circulation in a Homogenous Ocean Induced by a Stationary Hurricane

View More View Less
  • 1 Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Guangzhou, China
  • | 2 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
© Get Permissions
Restricted access

Abstract

Based on the classical Ekman layer theory, a simple analytical solution of the steady flow induced by a stationary hurricane in a homogenous ocean is discussed. The model consists of flow converging in an inward spiral in the deeper layer and diverging in the upper layer. The simple analytical model indicates that both the upwelling flux and the horizontal transport increase linearly with increasing radius of maximum winds. Furthermore, they both have a parabolic relationship with the maximum wind speed. The Coriolis parameter also affects the upwelling flux: the response to a hurricane is stronger at low latitudes than that at middle latitudes. Numerical solutions based on a regional version of an ocean general circulation model are similar to the primary results obtained through the analytical solution. Thus, the simplifications made in formulating the analytical solution are reasonable. Although the analytical solution in this paper is sought for a rather idealized ocean, it can help to make results from the more complicated numerical model understandable. These conceptual models provide a theoretical limit structure of the oceanic response to a moving hurricane over a stratified ocean.

Corresponding author address: Dr. Zhu Min Lu, South China Sea Institute of Oceanology, Chinese Academic of Science, Guangzhou 510301, China. Email: luzhumin@scsio.ac.cn

Abstract

Based on the classical Ekman layer theory, a simple analytical solution of the steady flow induced by a stationary hurricane in a homogenous ocean is discussed. The model consists of flow converging in an inward spiral in the deeper layer and diverging in the upper layer. The simple analytical model indicates that both the upwelling flux and the horizontal transport increase linearly with increasing radius of maximum winds. Furthermore, they both have a parabolic relationship with the maximum wind speed. The Coriolis parameter also affects the upwelling flux: the response to a hurricane is stronger at low latitudes than that at middle latitudes. Numerical solutions based on a regional version of an ocean general circulation model are similar to the primary results obtained through the analytical solution. Thus, the simplifications made in formulating the analytical solution are reasonable. Although the analytical solution in this paper is sought for a rather idealized ocean, it can help to make results from the more complicated numerical model understandable. These conceptual models provide a theoretical limit structure of the oceanic response to a moving hurricane over a stratified ocean.

Corresponding author address: Dr. Zhu Min Lu, South China Sea Institute of Oceanology, Chinese Academic of Science, Guangzhou 510301, China. Email: luzhumin@scsio.ac.cn

Save