• Bane Jr., J. M., , and W. K. Dewar, 1988: Gulf Stream bimodality and variability downstream of the Charleston Bump. J. Geophys. Res., 93 , 66956710.

    • Search Google Scholar
    • Export Citation
  • Bracco, A., , J. H. LaCasce, , and A. Provenzale, 2000: Velocity probability density functions for oceanic floats. J. Phys. Oceanogr., 30 , 461474.

    • Search Google Scholar
    • Export Citation
  • Brooks, C. E. P., , and N. Carruthers, 1953: Handbook of Statistical Methods in Meteorology. Her Majesty’s Stationery Office, 412 pp.

  • Chao, S-Y., 1984: Bimodality of the Kuroshio. J. Phys. Oceanogr., 14 , 92103.

  • Clauset, A., , C. R. Shalizi, , and M. E. J. Newman, 2009: Power-law distributions in empirical data. SIAM Rev., 51 , 661703.

  • Dong, S., , and K. A. Kelly, 2004: Heat budget in the Gulf Stream region: The importance of heat storage and advection. J. Phys. Oceanogr., 34 , 12141231.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., , P. Y. L. Traon, , and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from the combination of TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105 , 1947719498.

    • Search Google Scholar
    • Export Citation
  • Gardiner, C. W., 2004: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Science. 3rd ed. Springer-Verlag, 415 pp.

  • Gille, S. T., 2004: Using Kolmogorov–Smirnov statistics to assess Jason, TOPEX, and Poseidon altimeter measurements. Mar. Geod., 27 , (1–2). 4758.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., , and S. G. Llewellyn Smith, 2000: Velocity-variance probability distribution functions from altimeter measurements. J. Phys. Oceanogr., 30 , 125136.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. Part I. Theory. Tellus, 28 , 473484.

  • Hughes, C. W., , A. F. Thompson, , and C. Wilson, 2010: Identification of jets and mixing barriers from sea level and vorticity measurements using simple statistics. Ocean Modell., 32 , 4457. doi:10.1016/j.ocemod.2009.10.004.

    • Search Google Scholar
    • Export Citation
  • Ioannou, P. J., 1995: Nonnormality increases variance. J. Atmos. Sci., 52 , 11551158.

  • Isern-Fontanet, J., , E. Garca-Ladona, , J. Font, , and A. Garca-Olivares, 2006: Non-Gaussian velocity probability density functions: An altimetric perspective of the Mediterranean Sea. J. Phys. Oceanogr., 36 , 21532164.

    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., , G. Lapeyre, , P. Klein, , B. Chapron, , and M. W. Hecht, 2008: Three-dimensional reconstruction of oceanic mesoscale currents from surface information. J. Geophys. Res., 113 , C09005. doi:10.1029/2007JC004692.

    • Search Google Scholar
    • Export Citation
  • Klaassen, C. A. J., , P. J. Mokveld, , and B. van Es, 2000: Squared skewness minus kurtosis bounded by 186/125 for unimodal distributions. Stat. Probab. Lett., 50 , 131135.

    • Search Google Scholar
    • Export Citation
  • Kloeden, P., , and E. Platen, 1992: Numerical Solution of Stochastic Differential Equations. Springer-Verlag, 632 pp.

  • LaCasce, J. H., 2005: Eulerian and Lagrangian velocity distributions in the North Atlantic. J. Phys. Oceanogr., 35 , 23272336.

  • Lapeyre, G., , and P. Klein, 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophic theory. J. Phys. Oceanogr., 36 , 165176.

    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., , and S. T. Gille, 1998: Velocity probability density functions of large-scale turbulence in the upper ocean. Phys. Rev. Lett., 81 , 52495252.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., 2006: The Emergence of Numerical Weather Prediction: Richardson’s Dream. Cambridge University Press, 279 pp.

  • Majda, A. J., , C. Franzke, , and B. Khouider, 2008: An applied mathematics perspective on stochastic modelling for climate. Philos. Trans., 366 , 24292455.

    • Search Google Scholar
    • Export Citation
  • Maul, G. A., , and F. M. Vukovich, 1993: The relationship between variations in the Gulf of Mexico Loop Current and Straits of Florida volume transport. J. Phys. Oceanogr., 23 , 785796.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2004: A simple model for the skewness of global sea-surface winds. J. Atmos. Sci., 61 , 20372049.

  • Monahan, A. H., 2006a: The probability distributions of sea surface wind speeds. Part I: Theory and SSM/I observations. J. Climate, 19 , 497520.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2006b: The probability distributions of sea surface wind speeds. Part II: Dataset intercomparison and seasonal variability. J. Climate, 19 , 521534.

    • Search Google Scholar
    • Export Citation
  • Newman, M. E. J., 2005: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys., 46 , 323351.

  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Peinke, J., , F. Böttcher, , and S. Barth, 2004: Anomalous statistics in turbulence, financial markets and other complex systems. Ann. Phys., 13 , 450460.

    • Search Google Scholar
    • Export Citation
  • Penland, C., 2003a: Noise out of chaos and why it won’t go away. Bull. Amer. Meteor. Soc., 84 , 921925.

  • Penland, C., 2003b: A stochastic approach to nonlinear dynamics: A review (extended version of the article “Noise out of chaos and why it won’t go away”). Bull. Amer. Meteor. Soc., 84 , ES43ES51.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., , S. A. Teukolsky, , W. T. Vetterling, , and B. P. Flannery, 1992: Numerical Recipes in Fortran, The Art of Scientific Computing. Cambridge University Press, 963 pp.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , and W. Miao, 2000: Kuroshio path variations south of Japan: Bimodality as a self-sustained internal oscillation. J. Phys. Oceanogr., 30 , 21242137.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , T. M. Smith, , C. Liu, , D. B. Chelton, , K. S. Casey, , and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20 , 54735496.

    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press, 378 pp.

  • Sardeshmukh, P. D., , and P. Sura, 2009: Reconciling non-Gaussian climate statistics with linear dynamics. J. Climate, 22 , 11931207.

  • Schmeits, M. J., , and H. A. Dijkstra, 2001: Bimodal behavior of the Kuroshio and the Gulf Stream. J. Phys. Oceanogr., 31 , 34353456.

  • Sornette, D., 2006: Critical Phenomena in Natural Sciences. Springer, 528 pp.

  • Sturges, W., , and R. Leben, 2000: Frequency of ring separations from the Loop Current in the Gulf of Mexico: A revised estimate. J. Phys. Oceanogr., 30 , 18141819.

    • Search Google Scholar
    • Export Citation
  • Sura, P., 2003: Stochastic analysis of Southern and Pacific Ocean sea surface winds. J. Atmos. Sci., 60 , 654666.

  • Sura, P., 2010: On non-Gaussian SST variability in the gulf stream and other strong currents. Ocean Dyn., 60 .doi:10.1007/s10236-009-0255-9.

    • Search Google Scholar
    • Export Citation
  • Sura, P., , and J. J. Barsugli, 2002: A note on estimating drift and diffusion parameters from timeseries. Phys. Lett., 305A , 304311.

  • Sura, P., , and S. T. Gille, 2003: Interpreting wind-driven Southern Ocean variability in a stochastic framework. J. Mar. Res., 61 , 313334.

    • Search Google Scholar
    • Export Citation
  • Sura, P., , and M. Newman, 2008: The impact of rapid wind variability upon air–sea thermal coupling. J. Climate, 21 , 621637.

  • Sura, P., , and P. D. Sardeshmukh, 2008: A global view of non-Gaussian SST variability. J. Phys. Oceanogr., 38 , 639647.

  • Sura, P., , M. Newman, , C. Penland, , and P. D. Sardeshmukh, 2005: Multiplicative noise and non-Gaussianity: A paradigm for atmospheric regimes? J. Atmos. Sci., 62 , 13911409.

    • Search Google Scholar
    • Export Citation
  • Sura, P., , M. Newman, , and M. A. Alexander, 2006: Daily to decadal sea surface temperature variability driven by state-dependent stochastic heat fluxes. J. Phys. Oceanogr., 36 , 19401958.

    • Search Google Scholar
    • Export Citation
  • Thompson, K. R., , and E. Demirov, 2006: Skewness of sea level variability of the world’s oceans. J. Geophys. Res., 111 , C05005. doi:10.1029/2004JC002839.

    • Search Google Scholar
    • Export Citation
  • Wilkins, J. E., 1944: A note on skewness and kurtosis. Ann. Math. Stat., 15 , 333335.

  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 48 15
PDF Downloads 47 47 16

Stochastic Dynamics of Sea Surface Height Variability

View More View Less
  • 1 Department of Meteorology, The Florida State University, Tallahassee, Florida
  • | 2 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

Sea surface height anomalies measured by the Ocean Topography Experiment (TOPEX)/Poseidon satellite altimeter indicate high values of skewness and kurtosis. Except in a few regions, including the Gulf Stream, the Kuroshio Extension, and the Agulhas Retroflection, that display bimodal patterns of sea surface height variability, kurtosis is uniformly greater than 1.5 times the squared skewness minus an adjustment constant. This relationship differs substantially from what standard Gaussian or double-exponential noise would produce. However, it can be explained by a simple theory in which the noise is assumed to be multiplicative, meaning that a larger background state implies larger random noise elements. The existence of multiplicative noise can be anticipated from the equations of motion, if ocean dynamics are split into a slowly decorrelating deterministic component and a rapidly decorrelating contribution that is approximated as noise. Such a model raises the possibility of predicting the probabilities of extreme sea surface height anomalies from first physical principles and may provide a useful null hypothesis for non-Gaussian sea surface height variability.

Corresponding author address: Philip Sura, Department of Earth, Ocean and Atmospheric Science, The Florida State University, 1017 Academic Way, Tallahassee, FL 32306-4520. Email: psura@fsu.edu

Abstract

Sea surface height anomalies measured by the Ocean Topography Experiment (TOPEX)/Poseidon satellite altimeter indicate high values of skewness and kurtosis. Except in a few regions, including the Gulf Stream, the Kuroshio Extension, and the Agulhas Retroflection, that display bimodal patterns of sea surface height variability, kurtosis is uniformly greater than 1.5 times the squared skewness minus an adjustment constant. This relationship differs substantially from what standard Gaussian or double-exponential noise would produce. However, it can be explained by a simple theory in which the noise is assumed to be multiplicative, meaning that a larger background state implies larger random noise elements. The existence of multiplicative noise can be anticipated from the equations of motion, if ocean dynamics are split into a slowly decorrelating deterministic component and a rapidly decorrelating contribution that is approximated as noise. Such a model raises the possibility of predicting the probabilities of extreme sea surface height anomalies from first physical principles and may provide a useful null hypothesis for non-Gaussian sea surface height variability.

Corresponding author address: Philip Sura, Department of Earth, Ocean and Atmospheric Science, The Florida State University, 1017 Academic Way, Tallahassee, FL 32306-4520. Email: psura@fsu.edu

Save