• Andrews, D. G., , and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33 , 20312048.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic air-sea interaction. Adv. Geophys., 10 , 182.

  • Böning, C. W., , A. Dispert, , M. Visbeck, , S. R. Rintoul, , and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1 , 864869.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , M. G. Schlax, , R. M. Samelson, , and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34 , L15606. doi:10.1029/2007GL030812.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., , S. G. Alderson, , B. A. King, , and M. A. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in the Drake Passage. J. Geophys. Res., 108 , 8084. doi:10.1029/2001JC001147.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., , and F. Zeng, 2008: Simulated impact of altered Southern Hemisphere winds on the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett., 35 , L20708. doi:10.1029/2008GL035166.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., , and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41 , 253282.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., , J. C. McWilliams, , V. Canuto, , and D. Dubovikov, 2008: Parameterization of eddy fluxes at the ocean boundaries. J. Climate, 31 , 27702789.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., , S. M. Griffies, , A. J. G. Nurser, , and G. K. Vallis, 2010: A boundary-value problem for the parameterized mesoscale eddy transport. Ocean Modell., 32 , 143156.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., , and O. A. Saenko, 2006: Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett., 33 , L06701. doi:10.1029/2005GL025332.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gent, P. R., , J. Willebrand, , T. J. McDouglas, , and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25 , 463474.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., , J. S. A. Green, , and A. J. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res., 21 , 499528.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2002: Warming of the Southern Ocean since the 1950s. Science, 295 , 12751277.

  • Gillet, N. P., , and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302 , 273275.

  • Gnanadesikan, A., , and R. Hallberg, 2000: On the relationship of the circumpolar current to Southern Hemisphere winds in coarse-resolution ocean models. J. Phys. Oceanogr., 30 , 20132034.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19 , 675697.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., , S. M. Griffies, , and B. L. Samuels, 2007: Effects in a climate model of slope tapering in neutral physics schemes. Ocean Modell., 16 , 116.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28 , 831841.

  • Griffies, S. M., 2004: Fundamentals of Ocean Climate Models. Princeton University Press, 518 pp.

  • Griffies, S. M., , A. Gnanadesikan, , R. C. Pacanowski, , V. D. Larichev, , J. K. Dukowicz, , and R. D. Smith, 1998: Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr., 28 , 805830.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1 , 4579.

  • Hallberg, R., , and A. Gnanadesikan, 2001: An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. J. Phys. Oceanogr., 31 , 33123330.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., , and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36 , 22322252.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., , W. Wang, , and L. L. Liu, 2006: Decadal variability of wind-energy input to the world ocean. Deep-Sea Res., 53 , 3141.

  • Ito, T., , and J. Marshall, 2008: Control of lower-limb overturning circulation in the Southern Ocean by diapycnal mixing and mesoscale eddy transfer. J. Phys. Oceanogr., 38 , 28322845.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., , S. Danilov, , and D. Olbers, 2008: Eddies in numerical models of the Southern Ocean. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 177–198.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., , and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32 , 33283345.

  • Karsten, R., , and J. Marshall, 2002: Constructing the residual circulation of the ACC from observations. J. Phys. Oceanogr., 32 , 33153327.

    • Search Google Scholar
    • Export Citation
  • Karsten, R., , H. Jones, , and J. Marshall, 2002: The role of eddy transfer in setting the stratification and transport of a circumpolar current. J. Phys. Oceanogr., 32 , 3954.

    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., , J. H. Jungclaus, , and J. Marotzke, 2007: Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J. Phys. Oceanogr., 37 , 296312.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2007: Saturation of the Southern Ocean CO2 sink due to recent climate change. Science, 316 , 17351738.

  • Lin, S-J., 2004: A vertically Lagrangian finite-volume dynamical core for global models. Mon. Wea. Rev., 132 , 22932307.

  • Marshall, J., , and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33 , 23412354.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., , and A. M. Hogg, 2006: Circumpolar responses of the Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett., 33 , L16608. doi:10.1029/2006GL026499.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., , and M. Visbeck, 2005: A model of the zonally averaged stratification and overturning in the Southern Ocean. J. Phys. Oceanogr., 35 , 11901205.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., , D. Borowski, , C. Völker, , and J-O. Wölff, 2004: The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci., 16 , 439470.

    • Search Google Scholar
    • Export Citation
  • Prather, M. J., 1986: Numerical advection by second order moments. J. Geophys. Res., 91 , (D6). 66716681.

  • Rintoul, S., , C. Hughes, , and D. Olbers, 2001: The Antarctic Circumpolar Current system. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., International Geophysical Series, Vol. 77, Academic Press, 271–302.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2004: Impact of an eddy-permitting ocean resolution on control and climate change simulations with a global coupled GCM. J. Climate, 17 , 320.

    • Search Google Scholar
    • Export Citation
  • Russell, J. L., , K. W. Dixon, , A. Gnanadesikan, , R. J. Stouffer, , and J. R. Toggweiler, 2006: The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean. J. Climate, 19 , 63826390.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., 2007: Projected strengthening of the Southern Ocean winds: Some implications for the deep ocean circulation. Ocean Circulation: Mechanisms and Impacts, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 365–382.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., , J. C. Fyfe, , and M. H. England, 2005: On the response of the oceanic wind-driven circulation to atmospheric CO2 increase. Climate Dyn., 25 , 415426.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., , N. P. Gillett, , D. P. Stevens, , G. J. Marshall, , and H. K. Roscoe, 2009: The role of eddies in the Southern Ocean temperature response to the southern annular mode. J. Climate, 22 , 806818.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., , and I. V. Kamenkovich, 2007: Simulation of Subantarctic Mode and Antarctic Intermediate Waters in climate models. J. Climate, 20 , 50615080.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1998: On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr., 28 , 727739.

  • Stouffer, R. J., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part IV: Idealized climate response. J. Climate, 19 , 723740.

    • Search Google Scholar
    • Export Citation
  • Straub, D. N., 1993: On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 23 , 776782.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., , M. H. England, , S. R. Rintoul, , G. Madec, , J. Le Sommer, , and J-M. Molines, 2007: Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current. Ocean Sci., 3 , 491507.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., , J. Marshall, , T. Haine, , and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27 , 381402.

    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., , T. Lee, , and L-L. Fu, 2008: Eddy-induced meridional heat transport in the ocean. Geophys. Res. Lett., 35 , L20601. doi:10.1029/2008GL035490.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28 , 23322340.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 249 249 61
PDF Downloads 147 147 34

The Role of Mesoscale Eddies in the Rectification of the Southern Ocean Response to Climate Change

View More View Less
  • 1 Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
  • | 2 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

Simulations from a fine-resolution global coupled model, the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.4 (CM2.4), are presented, and the results are compared with a coarse version of the same coupled model, CM2.1, under idealized climate change scenarios. A particular focus is given to the dynamical response of the Southern Ocean and the role played by the eddies—parameterized or permitted—in setting the residual circulation and meridional density structure. Compared to the case in which eddies are parameterized and consistent with recent observational and idealized modeling studies, the eddy-permitting integrations of CM2.4 show that eddy activity is greatly energized with increasing mechanical and buoyancy forcings, buffering the ocean to atmospheric changes, and the magnitude of the residual oceanic circulation response is thus greatly reduced. Although compensation is far from being perfect, changes in poleward eddy fluxes partially compensate for the enhanced equatorward Ekman transport, leading to weak modifications in local isopycnal slopes, transport by the Antarctic Circumpolar Current, and overturning circulation. Since the presence of active ocean eddy dynamics buffers the oceanic response to atmospheric changes, the associated atmospheric response to those reduced ocean changes is also weakened. Further, it is hypothesized that present numerical approaches for the parameterization of eddy-induced transports could be too restrictive and prevent coarse-resolution models from faithfully representing the eddy response to variability and change in the forcing fields.

Corresponding author address: Riccardo Farneti, GFDL/AOS Program, Princeton University, 201 Forrestal Road, Princeton, NJ 08542. Email: riccardo.farneti@noaa.gov

Abstract

Simulations from a fine-resolution global coupled model, the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.4 (CM2.4), are presented, and the results are compared with a coarse version of the same coupled model, CM2.1, under idealized climate change scenarios. A particular focus is given to the dynamical response of the Southern Ocean and the role played by the eddies—parameterized or permitted—in setting the residual circulation and meridional density structure. Compared to the case in which eddies are parameterized and consistent with recent observational and idealized modeling studies, the eddy-permitting integrations of CM2.4 show that eddy activity is greatly energized with increasing mechanical and buoyancy forcings, buffering the ocean to atmospheric changes, and the magnitude of the residual oceanic circulation response is thus greatly reduced. Although compensation is far from being perfect, changes in poleward eddy fluxes partially compensate for the enhanced equatorward Ekman transport, leading to weak modifications in local isopycnal slopes, transport by the Antarctic Circumpolar Current, and overturning circulation. Since the presence of active ocean eddy dynamics buffers the oceanic response to atmospheric changes, the associated atmospheric response to those reduced ocean changes is also weakened. Further, it is hypothesized that present numerical approaches for the parameterization of eddy-induced transports could be too restrictive and prevent coarse-resolution models from faithfully representing the eddy response to variability and change in the forcing fields.

Corresponding author address: Riccardo Farneti, GFDL/AOS Program, Princeton University, 201 Forrestal Road, Princeton, NJ 08542. Email: riccardo.farneti@noaa.gov

Save