Response of the Southern Ocean to the Southern Annular Mode: Interannual Variability and Multidecadal Trend

A. M. Treguier Laboratoire de Physique des Oceans, CNRS–IRD–IFREMER–UBO, Brest, France

Search for other papers by A. M. Treguier in
Current site
Google Scholar
PubMed
Close
,
J. Le Sommer LEGI, CNRS–UJF–INPG, Grenoble, France

Search for other papers by J. Le Sommer in
Current site
Google Scholar
PubMed
Close
,
J. M. Molines LEGI, CNRS–UJF–INPG, Grenoble, France

Search for other papers by J. M. Molines in
Current site
Google Scholar
PubMed
Close
, and
B. de Cuevas National Oceanography Centre, Southampton, Southampton, United Kingdom

Search for other papers by B. de Cuevas in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors evaluate the response of the Southern Ocean to the variability and multidecadal trend of the southern annular mode (SAM) from 1972 to 2001 in a global eddy-permitting model of the DRAKKAR project. The transport of the Antarctic Circumpolar Current (ACC) is correlated with the SAM at interannual time scales but exhibits a drift because of the thermodynamic adjustment of the model (the ACC transport decreases because of a low renewal rate of dense waters around Antarctica). The interannual variability of the eddy kinetic energy (EKE) and the ACC transport are uncorrelated, but the EKE decreases like the ACC transport over the three decades, even though meridional eddy fluxes of heat and buoyancy remain stable. The contribution of oceanic eddies to meridional transports is an important issue because a growth of the poleward eddy transport could, in theory, oppose the increase of the mean overturning circulation forced by the SAM. In the authors’ model, the total meridional circulation at 50°S is well correlated with the SAM index (and the Ekman transport) at interannual time scales, and both increase over three decades between 1972 and 2001. However, given the long-term drift, no SAM-linked trend in the eddy contribution to the meridional overturning circulation is detectable. The increase of the meridional overturning is due to the time-mean component and is compensated by an increased buoyancy gain at the surface. The authors emphasize that the meridional circulation does not vary in a simple relationship with the zonal circulation. The model solution points out that the zonal circulation and the eddy kinetic energy are governed by different mechanisms according to the time scale considered (interannual or decadal).

Corresponding author address: A. M. Treguier, Laboratoire de Physique des Oceans, CNRS–IRD–IFREMER–UBO, UMR 6523, IFREMER, BP 70, 29280 Plouzane, France. Email: treguier@ifremer.fr

Abstract

The authors evaluate the response of the Southern Ocean to the variability and multidecadal trend of the southern annular mode (SAM) from 1972 to 2001 in a global eddy-permitting model of the DRAKKAR project. The transport of the Antarctic Circumpolar Current (ACC) is correlated with the SAM at interannual time scales but exhibits a drift because of the thermodynamic adjustment of the model (the ACC transport decreases because of a low renewal rate of dense waters around Antarctica). The interannual variability of the eddy kinetic energy (EKE) and the ACC transport are uncorrelated, but the EKE decreases like the ACC transport over the three decades, even though meridional eddy fluxes of heat and buoyancy remain stable. The contribution of oceanic eddies to meridional transports is an important issue because a growth of the poleward eddy transport could, in theory, oppose the increase of the mean overturning circulation forced by the SAM. In the authors’ model, the total meridional circulation at 50°S is well correlated with the SAM index (and the Ekman transport) at interannual time scales, and both increase over three decades between 1972 and 2001. However, given the long-term drift, no SAM-linked trend in the eddy contribution to the meridional overturning circulation is detectable. The increase of the meridional overturning is due to the time-mean component and is compensated by an increased buoyancy gain at the surface. The authors emphasize that the meridional circulation does not vary in a simple relationship with the zonal circulation. The model solution points out that the zonal circulation and the eddy kinetic energy are governed by different mechanisms according to the time scale considered (interannual or decadal).

Corresponding author address: A. M. Treguier, Laboratoire de Physique des Oceans, CNRS–IRD–IFREMER–UBO, UMR 6523, IFREMER, BP 70, 29280 Plouzane, France. Email: treguier@ifremer.fr

Save
  • Arblaster, J., and G. A. Meehl, 2006: Contributions of external forcings to southern annular mode trends. J. Climate, 19 , 28962905.

  • Badin, G., and R. G. Williams, 2010: On the buoyancy forcing and residual circulation in the Southern Ocean: The feedback from Ekman and eddy transfer. J. Phys. Oceanogr., 40 , 295310.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., and Coauthors, 2006: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn., 56 , (5–6). 543567.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., and Coauthors, 2007: Eddy permitting ocean circulation hindcasts of past decades. CLIVAR Exchanges, No. 42, International CLIVAR Project Office, Southampton, United Kingdom, 8–10.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the antarctic circumpolar current to recent climate change. Nat. Geosci., 1 , 864869. doi:10.1038/ngeo362.

    • Search Google Scholar
    • Export Citation
  • Borowski, D., R. Gerdes, and D. Olbers, 2002: Thermohaline and wind forcing of a circumpolar channel with blocked geostrophic contours. J. Phys. Oceanogr., 32 , 25202540.

    • Search Google Scholar
    • Export Citation
  • Brodeau, L., B. Barnier, A. Treguier, T. Penduff, and S. Gulev, 2010: An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modell., 31 , 88104. doi:10.1016/j.ocemod.2009.10.005.

    • Search Google Scholar
    • Export Citation
  • Döös, K., and D. Webb, 1994: The Deacon cell and other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24 , 429442.

  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105 , 1947719498.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., and O. A. Saenko, 2006: Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett., 33 , L06701. doi:10.1029/2005GL025332.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., O. A. Saenko, K. Zickfeld, M. Eby, and A. J. Weaver, 2007: The role of poleward-intensifying winds on Southern Ocean warming. J. Climate, 20 , 53915400.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., W. G. Large, and F. O. Bryan, 2001: What sets the mean transport through Drake Passage? J. Geophys. Res., 106 , (C2). 26932712.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and R. Hallberg, 2000: On the relationship of the circumpolar current to Southern Hemisphere winds in coarse-resolution ocean models. J. Phys. Oceanogr., 30 , 20132034.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36 , 22322252.

    • Search Google Scholar
    • Export Citation
  • Jayne, S., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32 , 33283345.

  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33 , 341364. doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Lenton, A., and R. J. Matear, 2007: Role of the southern annular mode (SAM) in Southern Ocean CO2 uptake. Global Biogeochem. Cycles, 21 , GB2016. doi:10.1029/2006GB002714.

    • Search Google Scholar
    • Export Citation
  • Lenton, A., F. Codron, L. Bopp, N. Metzl, P. Cadule, A. Taglabue, and J. Le Sommer, 2009: Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys. Res. Lett., 36 , L12606. doi:10.1029/2009GL038227.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2007: Saturation of the Southern Ocean CO2 sink due to recent climate change. Science, 316 , 17351738. doi:10.1126/science.1136188.

    • Search Google Scholar
    • Export Citation
  • Lique, C., A. M. Treguier, M. Scheinert, and T. Penduff, 2009: A model-based study of ice and freshwater transport variabilities along both sides of Greenland. Climate Dyn., 33 , 685705. doi:10.1007/s00382-008-0510-7.

    • Search Google Scholar
    • Export Citation
  • Lovenduski, N. S., N. Gruber, and S. C. Doney, 2008: Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Global Biogeochem. Cycles, 22 , GB3016. doi:10.1029/2007GB003139.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: Nemo ocean engine. Institut Pierre-Simon Laplace (IPSL) Note du Pole de modélisation 27, 1288–1619.

  • Marshall, G., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16 , 41344143.

  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33 , 23412354.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the southern annular mode. Geophys. Res. Lett., 33 , L16608. doi:10.1029/2006GL026499.

    • Search Google Scholar
    • Export Citation
  • Penduff, T., J. L. Sommer, B. Barnier, A. Treguier, J. Molines, and G. Madec, 2007: Influence of numerical schemes on current-topography interactions in 1/4 global ocean simulations. Ocean Sci., 3 , 509524.

    • Search Google Scholar
    • Export Citation
  • Penduff, T., M. Juza, L. Brodeau, G. S. B. Barnier, J. Molines, and A. Treguier, 2010: Impact of model resolution on sea-level variability with emphasis on interannual time scales. Ocean Sci., 6 , 269284.

    • Search Google Scholar
    • Export Citation
  • Screen, J., N. Gillett, D. Stevens, G. Marshall, and H. Roscoe, 2009: The role of eddies in the Southern Ocean temperature response to the southern annular mode. J. Climate, 22 , 806818.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. England, 2006: Coupled ocean–atmosphere–ice response to variations in the southern annular mode. J. Climate, 19 , 44574486.

    • Search Google Scholar
    • Export Citation
  • Speer, K., S. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30 , 32123222.

  • Straub, D., 1993: On the transport and angular momentum balance of channel models of the Antarctic circumpolar current. J. Phys. Oceanogr., 23 , 776782.

    • Search Google Scholar
    • Export Citation
  • Tansley, C. E., and D. P. Marshall, 2001: On the dynamics of wind-driven circumpolar currents. J. Phys. Oceanogr., 31 , 32583273.

  • Treguier, A. M., M. England, S. R. Rintoul, G. Madec, J. Le Sommer, and J-M. Molines, 2007: Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic circumpolar current. Ocean Sci., 3 , 491507.

    • Search Google Scholar
    • Export Citation
  • Yang, X-Y., D. Wang, J. Wang, and R. X. Huang, 2007: Connection between the decadal variability in the Southern Ocean circulation and the Southern Annular Mode. Geophys. Res. Lett., 34 , L16604. doi:10.1029/2007GL030526.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 388 173 6
PDF Downloads 251 103 6