Effects of Mesoscale Eddies on Subduction and Distribution of Subtropical Mode Water in an Eddy-Resolving OGCM of the Western North Pacific

Shiro Nishikawa Meteorological Research Institute, Tsukuba, Ibaraki, and Center for Climate System Research, University of Tokyo, Kashiwa, Chiba, Japan

Search for other papers by Shiro Nishikawa in
Current site
Google Scholar
PubMed
Close
,
Hiroyuki Tsujino Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Hiroyuki Tsujino in
Current site
Google Scholar
PubMed
Close
,
Kei Sakamoto Meteorological Research Institute, Tsukuba, Ibaraki, and Center for Climate System Research, University of Tokyo, Kashiwa, Chiba, Japan

Search for other papers by Kei Sakamoto in
Current site
Google Scholar
PubMed
Close
, and
Hideyuki Nakano Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Hideyuki Nakano in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effects of mesoscale eddies on the subduction and distribution of the North Pacific Subtropical Mode Water (STMW) are investigated using an eddy-resolving ocean general circulation model (OGCM). First, the subduction rate is calculated and the contribution of eddies to the subduction of STMW is estimated. It is found that eddy subduction significantly contributes to the total subduction of STMW. Second, eddy thickness transport and diapycnal flux are directly diagnosed to investigate the large-scale eddy-induced transport process of STMW. The large southward eddy thickness transport in the STMW core density is consistent with eddy subduction. The eddy transport on the isopycnal surface of STMW is directed down the thickness gradient and traverses the mean flow. The meridional eddy transport streamfunction indicates two eddy circulation cells south of 30°N, associated with the circulation of STMW. These cells flatten density surfaces, similar to the effect of the Gent and McWilliams (GM) scheme. The subducted STMW is gradually dissipated to lower or higher densities in the main thermocline, basically by vertical diffusion. Finally, local processes of eddy subduction and transport of STMW are explored using an anticyclonic eddy. Results imply two possible local processes of the eddy subduction of STMW. One is the destruction of a potential vorticity (PV) gradient by eddy mixing, where the PV gradient is due to winter deep mixed layer formation. The other is the southward translation of anticyclonic eddies that accompany low PV.

Corresponding author address: Shiro Nishikawa, Oceanographic Research Department, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan. Email: snishika@mri-jma.go.jp

Abstract

The effects of mesoscale eddies on the subduction and distribution of the North Pacific Subtropical Mode Water (STMW) are investigated using an eddy-resolving ocean general circulation model (OGCM). First, the subduction rate is calculated and the contribution of eddies to the subduction of STMW is estimated. It is found that eddy subduction significantly contributes to the total subduction of STMW. Second, eddy thickness transport and diapycnal flux are directly diagnosed to investigate the large-scale eddy-induced transport process of STMW. The large southward eddy thickness transport in the STMW core density is consistent with eddy subduction. The eddy transport on the isopycnal surface of STMW is directed down the thickness gradient and traverses the mean flow. The meridional eddy transport streamfunction indicates two eddy circulation cells south of 30°N, associated with the circulation of STMW. These cells flatten density surfaces, similar to the effect of the Gent and McWilliams (GM) scheme. The subducted STMW is gradually dissipated to lower or higher densities in the main thermocline, basically by vertical diffusion. Finally, local processes of eddy subduction and transport of STMW are explored using an anticyclonic eddy. Results imply two possible local processes of the eddy subduction of STMW. One is the destruction of a potential vorticity (PV) gradient by eddy mixing, where the PV gradient is due to winter deep mixed layer formation. The other is the southward translation of anticyclonic eddies that accompany low PV.

Corresponding author address: Shiro Nishikawa, Oceanographic Research Department, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan. Email: snishika@mri-jma.go.jp

Save
  • AVISO, 2008: SSALTO/DUACS user handbook: (M)SLA and (M)ADT near-real time and delayed time products. Version 1, Revision 9, CLS, 39 pp.

  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37 , 22282250.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and B. Cushman-Roisin, 1991: On the influence of the lower layer on the propagation of nonlinear oceanic eddies. J. Phys. Oceanogr., 21 , 939957.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34 , L15606. doi:10.1029/2007GL030812.

    • Search Google Scholar
    • Export Citation
  • Conkright, M. E., R. A. Locarnini, H. E. Garcia, T. D. O’Brien, T. P. Boyer, C. Stephens, and J. I. Antonov, 2002: World Ocean Atlas 2001: Objective Analysis, Data Statistics, and Figures. National Oceanographic Data Center Internal Rep. 17, 21 pp.

    • Search Google Scholar
    • Export Citation
  • Cox, M. D., 1985: An eddy resolving numerical model of the ventilated thermocline. J. Phys. Oceanogr., 15 , 13121324.

  • de Miranda, A. P., B. Barnier, and W. K. Dewer, 1999: Mode waters and subduction rates in a high-resolution South Atlantic simulation. J. Mar. Res., 57 , 213244.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, R. A., and A. F. Bennett, 1993: Microstructure fluxes across density surfaces. J. Phys. Oceanogr., 23 , 22542264.

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25 , 463474.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128 , 29352946.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modell., 26 , 146.

  • Hasumi, H., 2006: CCSR Ocean Component Model (COCO) version 4.0. CCSR Rep. 25, 103 pp.

  • Hazeleger, W., and S. S. Drijfhout, 2000: Eddy subduction in a model of the subtropical gyre. J. Phys. Oceanogr., 30 , 677695.

  • Hofmann, M., and M. A. Morales Maqueda, 2006: Performance of a second-order moments advection scheme in an ocean general circulation model. J. Geophys. Res., 111 , C05006. doi:10.1029/2005JC003279.

    • Search Google Scholar
    • Export Citation
  • Hu, D., 1996: The computation of diapycnal diffusive and advective scalar fluxes in multilayer isopycnic-coordinate ocean models. Mon. Wea. Rev., 124 , 18341851.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and B. Qiu, 1994: Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific. J. Phys. Oceanogr., 24 , 16081622.

    • Search Google Scholar
    • Export Citation
  • Ishikawa, I., H. Tsujino, M. Hirabara, H. Nakano, T. Yasuda, and H. Ishizaki, 2005: Meteorological Research Institute Community Ocean Model (MRI.COM) manual (in Japanese). Meteorological Research Institute Tech. Rep. 47, 189 pp.

    • Search Google Scholar
    • Export Citation
  • Ito, Y., and A. Kubokawa, 2003: Southward translation of strongly nonlinear warm eddies in a 2 1/2-layer β-plane model. J. Phys. Oceanogr., 33 , 12501251.

    • Search Google Scholar
    • Export Citation
  • Kubokawa, A., and T. Inui, 1999: Subtropical countercurrent in an idealized ocean GCM. J. Phys. Oceanogr., 29 , 13031313.

  • Large, W. G., and S. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The datasets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 112 pp.

    • Search Google Scholar
    • Export Citation
  • Lee, M-M., A. J. G. Nurser, A. C. Coward, and B. A. Cuevas, 2007: Eddy advective and diffusive transports of heat and salt in the Southern Ocean. J. Phys. Oceanogr., 37 , 13761393.

    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., 1979: A stable and accurate convective modelling procedure based upon quadratic upstream interpolation. J. Comput. Methods Appl. Mech. Eng., 19 , 5998.

    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., M. K. MacVean, and A. P. Lock, 1993: Positivity-preserving numerical schemes for multidimensional advection. NASA Tech. Memo. TM106055, 62 pp.

    • Search Google Scholar
    • Export Citation
  • Luyten, J. R., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13 , 292309.

  • Marshall, J. C., A. J. G. Nurser, and R. G. Williams, 1993: Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr., 23 , 13151329.

    • Search Google Scholar
    • Export Citation
  • Masuzawa, J., 1969: Subtropical mode water. Deep-Sea Res., 16 , 463472.

  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31 , 12221246.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and A. Blumberg, 2004: Wave breaking and ocean surface layer thermal response. J. Phys. Oceanogr., 34 , 693698.

  • Morel, Y., and J. C. McWilliams, 1997: Evolution of isolated interior vortices in the ocean. J. Phys. Oceanogr., 27 , 727747.

  • Morrow, R., F. Birol, D. Griffin, and J. Sudre, 2004: Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophys. Res. Lett., 31 , L24311. doi:10.1029/2004GL020974.

    • Search Google Scholar
    • Export Citation
  • Nakano, H., H. Tsujino, and R. Furue, 2008: The Kuroshio current system as a jet and twin “relative” recirculation gyres embedded in the Sverdrup circulation. Dyn. Atmos. Oceans, 45 , 135164.

    • Search Google Scholar
    • Export Citation
  • Nishikawa, S., and A. Kubokawa, 2007: Mixed layer depth front and subduction of low potential vorticity water in an idealized ocean GCM. J. Oceanogr., 63 , 125134.

    • Search Google Scholar
    • Export Citation
  • Oka, E., 2009: Seasonal and interannual variation of North Pacific Subtropical Mode Water in 2003–2006. J. Oceanogr., 65 , 151164.

  • Prather, M. J., 1986: Numerical advection by conservation of second-order moments. J. Geophys. Res., 91 , 66716681.

  • Qiu, B., and R. X. Huang, 1995: Ventilation of the North Atlantic and North Pacific: Subduction versus obduction. J. Phys. Oceanogr., 25 , 23742390.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35 , 20902103.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., P. Hacker, S. Chen, K. A. Donohue, D. R. Watts, H. Mitsudera, N. G. Hogg, and S. R. Jayne, 2006: Observation of the subtropical mode water evolution from the Kuroshio Extension System Study. J. Phys. Oceanogr., 37 , 457473.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, and P. Hacker, 2007: Effects of mesoscale eddies on subtropical mode water variability from the Kuroshio Extension System Study (KESS). J. Phys. Oceanogr., 37 , 9821000.

    • Search Google Scholar
    • Export Citation
  • Qu, T., S-P. Xie, H. Mitsudera, and A. Ishida, 2002: Subduction of the North Pacific Mode Water in a global high-resolution GCM. J. Phys. Oceanogr., 32 , 746763.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., S. R. Jayne, J. L. McClean, and M. E. Multrud, 2007: Formation of subtropical mode water in a high-resolution ocean simulation of the Kuroshio Extension region. Ocean Modell., 17 , 338356.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12 , 11541158.

  • St. Laurent, L., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29 , 2106. doi:10.1029/2002GL015633.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1979: Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA, 76 , 30513055.

    • Search Google Scholar
    • Export Citation
  • Suga, T., and K. Hanawa, 1990: The mixed layer climatology in the northwestern part of the North Pacific subtropical gyre and the formation area of subtropical mode water. J. Mar. Res., 48 , 543566.

    • Search Google Scholar
    • Export Citation
  • Suga, T., and K. Hanawa, 1995: The subtropical mode water circulation in the North Pacific. J. Phys. Oceanogr., 25 , 958970.

  • Suga, T., K. Motoki, Y. Aoki, and A. M. Macdonald, 2004: The North Pacific climatology of winter mixed layer and mode waters. J. Phys. Oceanogr., 34 , 322.

    • Search Google Scholar
    • Export Citation
  • Suga, T., Y. Aoki, H. Saito, and K. Hanawa, 2008: Ventilation of the North Pacific subtropical pycnocline and mode water formation. Prog. Oceanogr., 77 , 285297.

    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., and K. Hanawa, 2005: Remote reemergence areas of winter sea surface temperature anomalies in the North Pacific. Geophys. Res. Lett., 32 , L01606. doi:10.1029/2004GL021410.

    • Search Google Scholar
    • Export Citation
  • Theiss, J., 2004: Equatorward energy cascade, critical latitude, and the predominance of cyclonic vortices in geostrophic turbulence. J. Phys. Oceanogr., 34 , 16631678.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and T. Yasuda, 2004: Formation and circulation of mode water of the North Pacific in a high-resolution GCM. J. Phys. Oceanogr., 34 , 399415.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Y. Fujii, 2007: Improved representation of currents and water masses in the upper layer of the North Pacific Ocean in eddy-resolving OGCMs. CLIVAR Exchanges, No. 43, International CLIVAR Project Office, Southampton, United Kingdom, 19–21.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., N. Usui, and H. Nakano, 2006: Dynamics of Kuroshio path variations in a high-resolution general circulation model. J. Geophys. Res., 111 , C11001. doi:10.1029/2005JC003118.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., S. Nishikawa, K. Sakamoto, H. Nakano, and H. Ishizaki, 2010: Mesoscale eddy statistics and implications for parameterization refinements from a diagnosis of a high resolution model of the North Pacific. Ocean Modell., 33 , 205223.

    • Search Google Scholar
    • Export Citation
  • Uehara, H., T. Suga, K. Hanawa, and N. Shikama, 2003: A role of eddies in formation and transport of North Pacific Subtropical Mode Water. Geophys. Res. Lett., 30 , 1705. doi:10.1029/2003GL017542.

    • Search Google Scholar
    • Export Citation
  • Valdivieso da Costa, M., H. Mercier, and A. M. Treguier, 2005: Effects of the mixed layer time variability on kinematic subduction rate diagnostics. J. Phys. Oceanogr., 35 , 427443.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., T. Kunitani, A. Kubokawa, M. Nonaka, and S. Hosoda, 2000: Interdecadal thermocline variability in the North Pacific for 1958–97: A GCM simulation. J. Phys. Oceanogr., 30 , 27982813.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 424 176 25
PDF Downloads 266 91 8