Total Matrix Intercomparison: A Method for Determining the Geometry of Water-Mass Pathways

Geoffrey Gebbie Harvard University, and Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Geoffrey Gebbie in
Current site
Google Scholar
PubMed
Close
and
Peter Huybers Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Peter Huybers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ocean tracer distributions have long been used to decompose the deep ocean into constituent water masses, but previous inverse methods have generally been limited to just a few water masses that have been defined by a subjective choice of static property combinations. Through air–sea interaction and upper-ocean processes, all surface locations are potential sources of distinct tracer properties, and thus it is natural to define a distinct water type for each surface site. Here, a new box inversion method is developed to explore the contributions of all surface locations to the ocean interior, as well as the degree to which the observed tracer fields can be explained by a steady-state circulation with unchanging surface-boundary conditions. The total matrix intercomparison (TMI) method is a novel way to invert observations to solve for the pathways connecting every surface point to every interior point. In the limiting case that the circulation is steady and that five conservative tracers are perfectly observed, the TMI method unambiguously recovers the complete pathways information, owing to the fact that each grid box has, at most, six neighbors. Modern-day climatologies of temperature, salinity, phosphate, nitrate, oxygen, and oxygen-18/oxygen-16 isotope ratios are simultaneously inverted at 4° × 4° grid resolution with 33 vertical levels. Using boundary conditions at the surface and seafloor, the entire interior distribution of the observed tracers is reconstructed using the TMI method. Assuming that seafloor fluxes of tracer properties can be neglected, the method suggests that 25% or less of the water residing in the deep North Pacific originated in the North Atlantic. Integrating over the global ocean, the Southern Ocean is dominant, as the inversion indicates that almost 60% of the ocean volume originates from south of the Southern Hemisphere subtropical front.

Corresponding author address: Geoffrey Gebbie, Harvard University, 24 Oxford St., Cambridge, MA 02138. Email: gebbie@eps.harvard.edu

Abstract

Ocean tracer distributions have long been used to decompose the deep ocean into constituent water masses, but previous inverse methods have generally been limited to just a few water masses that have been defined by a subjective choice of static property combinations. Through air–sea interaction and upper-ocean processes, all surface locations are potential sources of distinct tracer properties, and thus it is natural to define a distinct water type for each surface site. Here, a new box inversion method is developed to explore the contributions of all surface locations to the ocean interior, as well as the degree to which the observed tracer fields can be explained by a steady-state circulation with unchanging surface-boundary conditions. The total matrix intercomparison (TMI) method is a novel way to invert observations to solve for the pathways connecting every surface point to every interior point. In the limiting case that the circulation is steady and that five conservative tracers are perfectly observed, the TMI method unambiguously recovers the complete pathways information, owing to the fact that each grid box has, at most, six neighbors. Modern-day climatologies of temperature, salinity, phosphate, nitrate, oxygen, and oxygen-18/oxygen-16 isotope ratios are simultaneously inverted at 4° × 4° grid resolution with 33 vertical levels. Using boundary conditions at the surface and seafloor, the entire interior distribution of the observed tracers is reconstructed using the TMI method. Assuming that seafloor fluxes of tracer properties can be neglected, the method suggests that 25% or less of the water residing in the deep North Pacific originated in the North Atlantic. Integrating over the global ocean, the Southern Ocean is dominant, as the inversion indicates that almost 60% of the ocean volume originates from south of the Southern Hemisphere subtropical front.

Corresponding author address: Geoffrey Gebbie, Harvard University, 24 Oxford St., Cambridge, MA 02138. Email: gebbie@eps.harvard.edu

Save
  • Adkins, J., K. McIntyre, and D. Schrag, 2002: The salinity, temperature, and δ18O of the glacial deep ocean. Science, 298 , 17241725.

    • Search Google Scholar
    • Export Citation
  • Anderson, L., and J. Sarmiento, 1994: Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cycles, 8 , 6580.

    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., S. Levitus, and T. P. Boyer, 2005: Thermosteric sea level rise, 1955–2003. Geophys. Res. Lett., 32 , L12602. doi:10.1029/2005GL023112.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 1992: Inverse Methods in Physical Oceanography. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, 346 pp.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and T. J. Mcdougall, 2000: Decadal changes along an Indian Ocean section at 32°S and their interpretation. J. Phys. Oceanogr., 30 , 12071222.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., S. Levitus, J. I. Antonov, R. A. Locarnini, and H. E. Garcia, 2005: Linear trends in salinity for the World Ocean, 1955–1998. Geophys. Res. Lett., 32 , L01604. doi:10.1029/2004GL021791.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., and Coauthors, 1998: How much deep water is formed in the Southern Ocean? J. Geophys. Res., 103 , (C8). 1583315843.

  • Conkright, M., S. Levitus, and T. Boyer, 1994: Nutrients. Vol. 1, World Ocean Atlas 1994, NOAA Atlas NESDIS 1, 150 pp.

  • Curry, R., and C. Mauritzen, 2005: Dilution of the northern North Atlantic Ocean in recent decades. Science, 308 , 17721774.

  • Curry, R., B. Dickson, and I. Yashayaev, 2003: A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature, 426 , 826829.

    • Search Google Scholar
    • Export Citation
  • Deacon, G. E. R., 1937: The hydrology of the Southern Ocean. Discovery Reports, Vol. 15, 1–24.

  • de Brauwere, A., S. H. M. Jacquet, F. De Ridder, F. Dehairs, R. Pintelon, J. Schoukens, and W. Baeyens, 2007: Water mass distributions in the Southern Ocean derived from a parametric analysis of mixing water masses. J. Geophys. Res., 112 , C02021. doi:10.1029/2006JC003742.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., R. Curry, and I. Yashayaev, 2003: Recent changes in the North Atlantic. Philos. Trans. Roy. Soc. London, 361A , 19171933.

    • Search Google Scholar
    • Export Citation
  • England, M. H., 1995: The age of water and ventilation timescales in a global ocean model. J. Phys. Oceanogr., 25 , 27562777.

  • Fahrbach, E., M. Hoppema, G. Rohardt, M. Schroder, and A. Wisotzki, 2004: Decadal-scale variations of water mass properties in the deep Weddell Sea. Ocean Dyn., 54 , 7791.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 , 453457.

    • Search Google Scholar
    • Export Citation
  • Gebbie, G., 2004: Subduction in an eddy-resolving state estimate of the northeast Atlantic Ocean. Ph.D. thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution Joint Program in Oceanography, 198 pp.

  • Gouretski, V., and K. P. Koltermann, 2004: WOCE global hydrographic climatology. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie Tech. Rep. 35, digital media.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and K. P. Koltermann, 2007: How much is the ocean really warming? Geophys. Res. Lett., 34 , L01610. doi:10.1029/2006GL027834.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and T. M. Hall, 2002: A generalized transport theory: Water-mass composition and age. J. Phys. Oceanogr., 32 , 19321946.

    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and T. W. N. Haine, 2002: On ocean transport diagnostics: The idealized age tracer and the age spectrum. J. Phys. Oceanogr., 32 , 19871991.

    • Search Google Scholar
    • Export Citation
  • Hansen, P. C., 1992: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev., 34 , 561580.

  • Hasselmann, K., 1976: Stochastic climate models, Part I: Theory. Tellus, 28 , 473485.

  • Henry-Edwards, A., and M. Tomczak, 2006: Detecting changes in Labrador Sea Water through a water mass analysis of BATS data. Ocean Sci., 1 , 1925.

    • Search Google Scholar
    • Export Citation
  • Hide, R., 1969: Dynamics of the atmospheres of the major planets with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically-conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci., 26 , 841853.

    • Search Google Scholar
    • Export Citation
  • Hinrichsen, H. H., and M. Tomczak, 1993: Optimum multiparameter analysis of the water mass structure in the western North Atlantic Ocean. J. Geophys. Res., 98 , (C6). 1015510169.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., F. W. Primeau, W. M. Smethie Jr., and S. Khatiwala, 2010: Where and how long ago was water in the western North Atlantic ventilated? Maximum-entropy inversions of bottle data from WOCE line A20. J. Geophys. Res., 115 , C07005. doi:10.1029/2009JC005750.

    • Search Google Scholar
    • Export Citation
  • Hupe, A., and J. Karstensen, 2000: Redfield stoichiometry in Arabian Sea subsurface waters. Global Biogeochem. Cycles, 14 , 357372.

  • Huybers, P., G. Gebbie, and O. Marchal, 2007: Can paleoceanographic tracers constrain meridional circulation rates? J. Phys. Oceanogr., 37 , 394407.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., 2008: Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes. J. Geophys. Res., 113 , C05027. doi:10.1029/2007JC004477.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and L. Talley, 1997: Deep tracer and dynamical plumes in the tropical Pacific Ocean. J. Geophys. Res., 102 , (C11). 2495324964.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., S. Mecking, B. M. Sloyan, and S. E. Wijffels, 2007: Recent bottom water warming in the Pacific Ocean. J. Climate, 20 , 53655375.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., S. G. Purkey, and J. M. Toole, 2008: Reduced Antarctic meridional overturning circulation reaches the North Atlantic Ocean. Geophys. Res. Lett., 35 , L22601. doi:10.1029/2008GL035619.

    • Search Google Scholar
    • Export Citation
  • Joyce, T., 1986: The geothermal heating of the abyssal subarctic Pacific Ocean. Deep-Sea Res. I, 33 , 10031015.

  • Karstensen, J., and M. Tomczak, 1997: Ventilation processes and water mass ages in the thermocline of the southeast Indian Ocean. Geophys. Res. Lett., 24 , 27772780.

    • Search Google Scholar
    • Export Citation
  • Karstensen, J., and M. Tomczak, 1998: Age determination of mixed water masses using CFC and oxygen data. J. Geophys. Res., 103 , (C9). 1859918609.

    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., 2007: A computational framework for simulation of biogeochemical tracers in the ocean. Global Biogeochem. Cycles, 21 , GB3001. doi:10.1029/2007GB002923.

    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., M. Visbeck, and M. A. Cane, 2005: Accelerated simulation of passive tracers in ocean circulation models. Ocean Modell., 9 , 5169.

    • Search Google Scholar
    • Export Citation
  • Lab Sea Group, 1998: The Labrador Sea Deep Convection Experiment. Bull. Amer. Meteor. Soc., 79 , 20332058.

  • Leffanue, H., and M. Tomczak, 2004: Using OMP analysis to observe temporal variability in water mass distribution. J. Mar. Syst., 48 , (1–4). 314.

    • Search Google Scholar
    • Export Citation
  • LeGrande, A. N., and G. A. Schmidt, 2006: Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett., 33 , L12604. doi:10.1029/2006GL026011.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, T. P. Boyer, and C. Stephens, 2000: Warming of the World Ocean. Science, 287 , 22252229.

  • Mackas, D. L., K. L. Denman, and A. F. Bennett, 1987: Least-squares multiple tracer analysis of water mass composition. J. Geophys. Res., 92 , (C3). 29072918.

    • Search Google Scholar
    • Export Citation
  • Matsumoto, K., 2007: Radiocarbon-based circulation age of the world oceans. J. Geophys. Res., 112 , C09004. doi:10.1029/2007JC004095.

  • Mercier, H., 1989: A study of the time-averaged circulation in the western North Atlantic by simultaneous nonlinear inversion of hydrographic and current meter data. Deep-Sea Res., 36 , 297313.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth, and W. D. Nowlin, 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42 , 641673.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., G. C. Johnson, and J. L. Bullister, 1999: Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr., 43 , 55109.

    • Search Google Scholar
    • Export Citation
  • Primeau, F., 2005: Characterizing transport between the surface mixed layer and the ocean interior with a forward and adjoint global ocean transport model. J. Phys. Oceanogr., 35 , 545564.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., 2007: Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific oceans. Geophys. Res. Lett., 34 , L06606. doi:10.1029/2006GL028550.

    • Search Google Scholar
    • Export Citation
  • Roden, G., 1975: On North Pacific temperature, salinity, sound velocity and density fronts and their relation to the wind and energy flux fields. J. Phys. Oceanogr., 5 , 557571.

    • Search Google Scholar
    • Export Citation
  • Schlitzer, R., 2007: Assimilation of radiocarbon and chlorofluorocarbon data to constrain deep and bottom water transports in the World Ocean. J. Phys. Oceanogr., 37 , 259276.

    • Search Google Scholar
    • Export Citation
  • Sievers, H. A., and J. W. D. Nowlin, 1984: The stratification and water masses at Drake Passage. J. Geophys. Res., 89 , 1048910514.

  • Stammer, D., and C. Wunsch, 1996: The determination of the large-scale circulation of the Pacific Ocean from satellite altimetry using model Green’s functions. J. Geophys. Res., 101 , (C8). 1840918432.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1962: On the smallness of sinking regions in the ocean. Proc. Natl. Acad. Sci. USA, 48 , 766772.

  • Stommel, H., 1979: Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA, 76 , 30513055.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., and A. B. Arons, 1960: On the abyssal circulation of the World Ocean. II. An idealized model of the circulation pattern and amplitude in oceanic basins. Deep-Sea Res., 6 , 217233.

    • Search Google Scholar
    • Export Citation
  • Tarantola, A., and B. Valette, 1982: Generalized nonlinear inverse problems solved using the least squares criterion. Rev. Geophys. Space Phys., 20 , 219232.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., 1999: Variation of atmospheric CO2 by ventilation of the ocean’s deepest water. Paleoceanography, 14 , 572588.

  • Tomczak, M., 1981: Bass Strait water intrusions in the Tasman Sea and mean temperature-salinity curves. Aust. J. Mar. Freshwater Res., 32 , 699708.

    • Search Google Scholar
    • Export Citation
  • Tomczak, M., and D. G. B. Large, 1989: Optimum multiparameter analysis of mixing in the thermocline of the eastern Indian Ocean. J. Geophys. Res., 94 , (C11). 1614116149.

    • Search Google Scholar
    • Export Citation
  • Tomczak, M., and J. S. Godfrey, 1994: Regional Oceanography: An Introduction. Pergamon Press, 442 pp.

  • Tziperman, E., and A. Hecht, 1988: Circulation in the eastern Levantine Basin determined by inverse methods. J. Phys. Oceanogr., 18 , 506518.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., 1981: Deep circulation of the World Ocean. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, Eds., MIT Press, 6–41.

    • Search Google Scholar
    • Export Citation
  • Williams, R. G., J. Marshall, and G. Nurser, 1995: Does Stommel’s mixed layer “demon” work? J. Phys. Oceanogr., 25 , 30893102.

  • Wong, A. P. S., N. L. Bindoff, and J. A. Church, 1999: Large-scale freshening of intermediate waters in the Pacific and Indian oceans. Nature, 400 , 440443.

    • Search Google Scholar
    • Export Citation
  • Worthington, L., 1981: The water masses of the World Ocean: Some results of a fine-scale census. Evolution of Physical Oceanography, Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, Eds., The MIT Press, 42–60.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 437 pp.

  • Wunsch, C., and P. Heimbach, 2008: How long to oceanic tracer and proxy equilibrium? Quat. Sci. Rev., 27 , 637651.

  • Wüst, G., 1935: Schichtung und zirkulation des Atlantischen Ozeans. Die stratosphare. Wissenschaftliche Ergebnisse der Deutschen Atlantischen Expedition auf dem Forschungs-und Vermessungsschiff “Meteor” 1925–1927 (The Stratosphere of the Atlantic Ocean), W. J. Emery, Ed., Amerind, 1–180.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., 2007: Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr., 73 , 242276.

  • Yashayaev, I., and A. Clarke, 2008: Evolution of North Atlantic water masses inferred from Labrador Sea salinity series. Oceanography, 21 , 3045.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 706 256 21
PDF Downloads 557 195 26