Barotropic and Baroclinic M2 Tides in the Monterey Bay Region

G. S. Carter Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by G. S. Carter in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A high-resolution (250 m) primitive equation model is used to simulate the depth-averaged and baroclinic M2 tides in the Monterey Bay region. The model shows a high level of skill in comparisons with sea level observations. ADCP current observations within the submarine canyon are reasonably well reproduced. The modeled depth-averaged currents have a complex spatial pattern with magnitudes in excess of 0.1 m s−1 near Moss Landing. During the second half of flood (ebb) tide, the flow is into (out of) the bay through the canyon but out of (into) the bay over the shelf regions. This depth-averaged flow pattern is not evident in a diagnostic run, implying a feedback between the internal tides and the pressure gradient in the bay. The depth-integrated baroclinic (total minus depth-averaged) energy fluxes show a complex beamlike pattern due to the interaction of energy from multiple sources. The beams have magnitudes up to 1 kW m−1 interspersed with regions of near-zero depth-integrated flux. Energy entering the bay propagates northward from generation regions along the continental margins to the south of the bay (notably on the flanks of Sur Platform) and is steered into the canyon. A localized increase in depth-integrated baroclinic flux magnitude (up to 5 times the values elsewhere in the domain) closely follows the canyon axis near the mouth of the bay, presumably due to topographic focusing. Upper ocean velocities from a long-term surface mooring (MBARI M1) are used to assess the temporal variability of the M2 tide outside the canyon.

Corresponding author address: Dr. Glenn Carter, Dept. of Oceanography, University of Hawaii, 1000 Pope Road, Honolulu, HI 96822. Email: gscarter@hawaii.edu

Abstract

A high-resolution (250 m) primitive equation model is used to simulate the depth-averaged and baroclinic M2 tides in the Monterey Bay region. The model shows a high level of skill in comparisons with sea level observations. ADCP current observations within the submarine canyon are reasonably well reproduced. The modeled depth-averaged currents have a complex spatial pattern with magnitudes in excess of 0.1 m s−1 near Moss Landing. During the second half of flood (ebb) tide, the flow is into (out of) the bay through the canyon but out of (into) the bay over the shelf regions. This depth-averaged flow pattern is not evident in a diagnostic run, implying a feedback between the internal tides and the pressure gradient in the bay. The depth-integrated baroclinic (total minus depth-averaged) energy fluxes show a complex beamlike pattern due to the interaction of energy from multiple sources. The beams have magnitudes up to 1 kW m−1 interspersed with regions of near-zero depth-integrated flux. Energy entering the bay propagates northward from generation regions along the continental margins to the south of the bay (notably on the flanks of Sur Platform) and is steered into the canyon. A localized increase in depth-integrated baroclinic flux magnitude (up to 5 times the values elsewhere in the domain) closely follows the canyon axis near the mouth of the bay, presumably due to topographic focusing. Upper ocean velocities from a long-term surface mooring (MBARI M1) are used to assess the temporal variability of the M2 tide outside the canyon.

Corresponding author address: Dr. Glenn Carter, Dept. of Oceanography, University of Hawaii, 1000 Pope Road, Honolulu, HI 96822. Email: gscarter@hawaii.edu

Save
  • Alford, M. H., M. Gregg, and M. A. Merrifield, 2006: Structure, propagation, and mixing of energetic baroclinic tides in Mamala Bay, Oahu, Hawaii. J. Phys. Oceanogr., 36 , 9971018.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and D. B. Haidvogel, 1993: Numerical simulation of flow around a tall seamount. Part I: Problem formulation and model accuracy. J. Phys. Oceanogr., 23 , 17361753.

    • Search Google Scholar
    • Export Citation
  • Blumberg, A. F., and G. L. Mellor, 1987: A description of a three-dimensional coastal ocean circulation model. Three-dimensional Coastal Ocean Models, N. S. Heaps, Ed., Coastal and Estuarine Sciences, Vol. 4, Amer. Geophys. Union, 1–16.

    • Search Google Scholar
    • Export Citation
  • Breaker, L. C., and W. W. Broenkow, 1994: The circulation of Monterey Bay and related processes. Oceanography and Marine Biology: An Annual Review, A. D. Ansell, R. N. Gibson, and M. Barnes, Eds., Vol. 32, UCL Press, 1–64.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and M. C. Gregg, 2002: Intense, variable mixing near the head of Monterey submarine canyon. J. Phys. Oceanogr., 32 , 31453165.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and M. A. Merrifield, 2007: Open boundary conditions for regional tidal simulations. Ocean Modell., 18 , 194209.

  • Carter, G. S., M. C. Gregg, and R-C. Lien, 2005: Internal and solitary-like waves, and mixing on the Monterey Bay shelf. Cont. Shelf Res., 25 , 14991520.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and Coauthors, 2008: Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J. Phys. Oceanogr., 38 , 22052223.

    • Search Google Scholar
    • Export Citation
  • Caster, W. A., 1969: Near-bottom currents in Monterey Submarine Canyon and on the adjacent shelf. M.S. thesis, Department of Oceanography, Naval Postgraduate School, 203 pp.

  • Chu, P. C., and C. Fan, 1997: Sixth-order difference scheme for sigma coordinate ocean models. J. Phys. Oceanogr., 27 , 20642071.

  • Cummins, P. F., and L-Y. Oey, 1997: Simulation of barotropic and baroclinic tides off northern British Columbia. J. Phys. Oceanogr., 27 , 762781.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., W. R. Young, and S. Llewellyn Smith, 2006: Numerical and analytical estimates of M2 tidal conversion at steep oceanic ridges. J. Phys. Oceanogr., 36 , 10721084.

    • Search Google Scholar
    • Export Citation
  • Dooley, J. J., 1968: An investigation of near-bottom currents in the Monterey Submarine Canyon. M.S. thesis, Department of Oceanography, Naval Postgraduate School, 58 pp.

  • Dushaw, B. D., B. D. Cornuelle, P. F. Worcester, B. M. Howe, and D. S. Luther, 1995: Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. J. Phys. Oceanogr., 25 , 631647.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., 1997: Tidal data inversion: Interpolation and inference. Prog. Oceanogr., 40 , 5380.

  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405 , 775778.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19 , 183204.

    • Search Google Scholar
    • Export Citation
  • Flather, R. A., 1976: A tidal model of the north–west European continental shelf. Mem. Soc. Roy. Sci. Liege, 6 (10) 141164.

  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39 , 5787.

  • Gatje, P. H., and D. D. Pizinger, 1965: Bottom current measurements near the head of Monterey submarine canyon. M.S. thesis, Department of Oceanography, Naval Postgraduate School, 61 pp.

  • Gordon, R. L., and N. F. Marshall, 1976: Submarine canyons: Internal wave traps? Geophys. Res. Lett., 3 , 622624.

  • Gregg, M. C., G. S. Carter, and E. Kunze, 2005: Corrigendum. J. Phys. Oceanogr., 35 , 17121715.

  • Haney, R. L., 1991: On the pressure gradient force over steep topography in sigma coordinate ocean models. J. Phys. Oceanogr., 21 , 610619.

    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., 1979: The California Current System—hypothesis and facts. Prog. Oceanogr., 8 , 191279.

  • Hodges, B. R., B. Laval, and B. M. Wadzuk, 2006: Numerical error assessment and a temporal horizon for internal waves in a hydrostatic model. Ocean Modell., 13 , 4446.

    • Search Google Scholar
    • Export Citation
  • Hollister, J. E., 1975: Currents in Monterey Submarine Canyon. M.S. thesis, Department of Oceanography, Naval Postgraduate School, 86 pp.

  • Hotchkiss, F. S., and C. Wunsch, 1982: Internal waves in Hudson Canyon with possible geological implications. Deep-Sea Res., 29 , 415442.

    • Search Google Scholar
    • Export Citation
  • Jachec, S. M., O. B. Fringer, M. G. Gerritsen, and R. L. Street, 2006: Numerical simulation of internal tides and the resulting energetics within Monterey Bay and the surrounding area. Geophys. Res. Lett., 33 , L12605. doi:10.1029/2006GL026314.

    • Search Google Scholar
    • Export Citation
  • Johnson, K. S., C. K. Paull, J. P. Barry, and F. P. Chavez, 2001: A decadal record of underflows from a coastal river into the deep sea. Geology, 29 , 10191022.

    • Search Google Scholar
    • Export Citation
  • Key, S. A., 1999: Internal tidal bores in the Monterey Canyon. M.S. thesis, Department of Oceanography, Naval Postgraduate School, 91 pp.

  • Kundu, P. K., 1990: Fluid Mechanics. Academic Press, 638 pp.

  • Kunze, E., L. K. Rosenfeld, G. S. Carter, and M. C. Gregg, 2002: Internal waves in Monterey submarine canyon. J. Phys. Oceanogr., 32 , 18901913.

    • Search Google Scholar
    • Export Citation
  • Lien, R-C., and M. C. Gregg, 2001: Observations of turbulence in a tidal beam and across a coastal ridge. J. Geophys. Res., 106C , 45754591.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., and T. R. Osborn, 1985: Turbulence measurements in a submarine canyon. Cont. Shelf Res., 4 , 681698.

  • Mahadevan, A., 2006: Modeling vertical motion at ocean fronts: Are nonhydrostatic effects relevant at submesoscales? Ocean Modell., 14 , 222240.

    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, J. Nash, E. Kunze, and M. A. Merrifield, 2007: Diagnosing a standing wave in Mamala Bay, Oahu. Geophys. Res. Lett., 34 , L17604. doi:10.1029/2007GL029749.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., T. Ezer, and L-Y. Oey, 1994: The pressure gradient conundrum of sigma coordinate ocean models. J. Atmos. Oceanic Technol., 11 , 11261134.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Kunze, J. M. Toole, and R. W. Schmit, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34 , 11171134.

    • Search Google Scholar
    • Export Citation
  • Njus, I. J., 1968: An investigation of the environmental factors affecting the near-bottom currents in Monterey Submarine Canyon. M.S. thesis, Department of Oceanography, Naval Postgraduate School, 80 pp.

  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28 , 929937.

    • Search Google Scholar
    • Export Citation
  • Petruncio, E. T., L. K. Rosenfeld, and J. D. Paduan, 1998: Observations of the internal tide in Monterey canyon. J. Phys. Oceanogr., 28 , 18731903.

    • Search Google Scholar
    • Export Citation
  • Petruncio, E. T., J. D. Paduan, and L. K. Rosenfeld, 2002: Numerical simulations of the internal tide in a submarine canyon. Ocean Modell., 4 , 221248.

    • Search Google Scholar
    • Export Citation
  • Pugh, D. T., 1987: Tides, Surges and Mean Sea-Level. John Wiley & Sons, 472 pp.

  • Rainville, L., and R. Pinkel, 2006: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36 , 12201236.

  • Rainville, L., T. M. S. Johnston, G. S. Carter, M. A. Merrifield, R. Pinkel, P. F. Worcester, and B. D. Dushaw, 2010: Interference and propagation of the M2 internal tide south of the Hawaiian Ridge. J. Phys. Oceanogr., 40 , 311325.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, L. K., R. E. Schramm, J. B. Paduan, G. A. Hatcher, and T. Anderson, 1994: Hydrographic data collected in Monterey Bay during 1 September 1988 to 16 December 1992. Tech. Rep. 94-15, Monterey Bay Research Aquarium, 549 pp.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, L. K., J. D. Paduan, E. T. Petruncio, and J. E. Goncalves, 1999: Numerical simulations and observations of the internal tide in a submarine canyon. Dynamics of Oceanic Internal Gravity Waves II: Proc. ‘Aha Huliko’a Hawaiian Winter Workshop, P. Müller and D. Henderson, Eds., Honolulu, HI, University of Hawaii at Manoa, 63–71.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, L. K., I. Shulman, M. Cook, J. D. Paduan, and L. Shulman, 2009: Methodology for regional tidal model evaluation, with application to Central California. Deep-Sea Res. II, 56 , (2–3). 199218.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. McWilliams, 2003: A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108 , 3090. doi:10.1029/2001JC001047.

    • Search Google Scholar
    • Export Citation
  • Shea, R. E., and W. W. Broenkow, 1982: The role of internal tides in the nutrient enrichment of Monterey Bay, California. Estuar. Coast. Shelf Sci., 15 , 5766.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277 , 19561962.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., S. Stringer, C. Garrett, and D. Perrault-Joncas, 2003: The generation of internal tides at abrupt topography. Deep-Sea Res. I, 50 , 9871003.

    • Search Google Scholar
    • Export Citation
  • Wang, X., Y. Chao, C. Dong, J. Farrara, Z. Li, J. C. McWilliams, J. D. Paduan, and L. K. Rosenfeld, 2009: Modeling tides in Monterey Bay, California. Deep-Sea Res. II, 56 , (2–3). 219231.

    • Search Google Scholar
    • Export Citation
  • Zilberman, N. V., 2009: Internal tide generation over deep-ocean topography. Ph.D. thesis, University of Hawaii, 90 pp.

  • Zilberman, N. V., J. M. Becker, M. A. Merrifield, and G. S. Carter, 2009: Model estimates of M2 internal tide generation over Mid-Atlantic Ridge topography. J. Phys. Oceanogr., 39 , 26352651.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 369 144 8
PDF Downloads 225 56 5