Sea Ice Response to Atmospheric and Oceanic Forcing in the Bering Sea

Jinlun Zhang Polar Science Center, Applied Physics Laboratory, College of Ocean and Fishery Sciences, University of Washington, Seattle, Washington

Search for other papers by Jinlun Zhang in
Current site
Google Scholar
PubMed
Close
,
Rebecca Woodgate Polar Science Center, Applied Physics Laboratory, College of Ocean and Fishery Sciences, University of Washington, Seattle, Washington

Search for other papers by Rebecca Woodgate in
Current site
Google Scholar
PubMed
Close
, and
Richard Moritz Polar Science Center, Applied Physics Laboratory, College of Ocean and Fishery Sciences, University of Washington, Seattle, Washington

Search for other papers by Richard Moritz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A coupled sea ice–ocean model is developed to quantify the sea ice response to changes in atmospheric and oceanic forcing in the Bering Sea over the period 1970–2008. The model captures much of the observed spatiotemporal variability of sea ice and sea surface temperature (SST) and the basic features of the upper-ocean circulation in the Bering Sea. Model results suggest that tides affect the spatial redistribution of ice mass by up to 0.1 m or 15% in the central-eastern Bering Sea by modifying ice motion and deformation and ocean flows. The considerable interannual variability in the pattern and strength of winter northeasterly winds leads to southwestward ice mass advection during January–May, ranging from 0.9 × 1012 m3 in 1996 to 1.8 × 1012 m3 in 1976 and averaging 1.4 × 1012 m3, which is almost twice the January–May mean total ice volume in the Bering Sea. The large-scale southward ice mass advection is constrained by warm surface waters in the south that melt 1.5 × 1012 m3 of ice in mainly the ice-edge areas during January–May, with substantial interannual variability ranging from 0.94 × 1012 m3 in 1996 to 2.0 × 1012 m3 in 1976. Ice mass advection processes also enhance thermodynamic ice growth in the northern Bering Sea by increasing areas of open water and thin ice. Ice growth during January–May is 0.90 × 1012 m3 in 1996 and 2.1 × 1012 m3 in 1976, averaging 1.3 × 1012 m3 over 1970–2008. Thus, the substantial interannual variability of the Bering Sea ice cover is dominated by changes in the wind-driven ice mass advection and the ocean thermal front at the ice edge. The observed ecological regime shifts in the Bering Sea occurred with significant changes in sea ice, surface air temperature, and SST, which in turn are correlated with the Pacific decadal oscillation over 1970–2008 but not with other climate indices: Arctic Oscillation, North Pacific index, and El Niño–Southern Oscillation. This indicates that the PDO index may most effectively explain the regime shifts in the Bering Sea.

Corresponding author address: Jinlun Zhang, Polar Science Center, Applied Physics Laboratory, College of Ocean and Fishery Sciences, University of Washington, 1013 NE 40th St., Seattle, WA 98105. Email: zhang@apl.washington.edu

Abstract

A coupled sea ice–ocean model is developed to quantify the sea ice response to changes in atmospheric and oceanic forcing in the Bering Sea over the period 1970–2008. The model captures much of the observed spatiotemporal variability of sea ice and sea surface temperature (SST) and the basic features of the upper-ocean circulation in the Bering Sea. Model results suggest that tides affect the spatial redistribution of ice mass by up to 0.1 m or 15% in the central-eastern Bering Sea by modifying ice motion and deformation and ocean flows. The considerable interannual variability in the pattern and strength of winter northeasterly winds leads to southwestward ice mass advection during January–May, ranging from 0.9 × 1012 m3 in 1996 to 1.8 × 1012 m3 in 1976 and averaging 1.4 × 1012 m3, which is almost twice the January–May mean total ice volume in the Bering Sea. The large-scale southward ice mass advection is constrained by warm surface waters in the south that melt 1.5 × 1012 m3 of ice in mainly the ice-edge areas during January–May, with substantial interannual variability ranging from 0.94 × 1012 m3 in 1996 to 2.0 × 1012 m3 in 1976. Ice mass advection processes also enhance thermodynamic ice growth in the northern Bering Sea by increasing areas of open water and thin ice. Ice growth during January–May is 0.90 × 1012 m3 in 1996 and 2.1 × 1012 m3 in 1976, averaging 1.3 × 1012 m3 over 1970–2008. Thus, the substantial interannual variability of the Bering Sea ice cover is dominated by changes in the wind-driven ice mass advection and the ocean thermal front at the ice edge. The observed ecological regime shifts in the Bering Sea occurred with significant changes in sea ice, surface air temperature, and SST, which in turn are correlated with the Pacific decadal oscillation over 1970–2008 but not with other climate indices: Arctic Oscillation, North Pacific index, and El Niño–Southern Oscillation. This indicates that the PDO index may most effectively explain the regime shifts in the Bering Sea.

Corresponding author address: Jinlun Zhang, Polar Science Center, Applied Physics Laboratory, College of Ocean and Fishery Sciences, University of Washington, 1013 NE 40th St., Seattle, WA 98105. Email: zhang@apl.washington.edu

Save
  • ARCUS, 2004: Bering Ecosystem Study (BEST) science plan. Arctic Research Consortium of the United States, 96 pp. [Available online at http://www.arcus.org/Bering/reports/downloads/BEST_Science_Plan.pdf].

    • Search Google Scholar
    • Export Citation
  • Benson, A. J., and A. W. Trites, 2002: Ecological effects of regime shifts in the Bering Sea and eastern North Pacific Ocean. Fish Fish., 3 , 95113.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1969: A numerical method for the study of the circulation of the world oceans. J. Comput. Phys., 4 , 347376.

  • Clement Kinney, J., W. Maslowski, and S. Okkonen, 2009: On the processes controlling shelf–basin exchange and outer shelf dynamics in the Bering Sea. Deep-Sea Res. II, 56 , 13511362.

    • Search Google Scholar
    • Export Citation
  • Cox, M. D., 1984: A primitive equation, three-dimensional model of the oceans. NOAA/Geophysical Fluid Dynamics Laboratory/Ocean Group Tech. Rep. 1, 141 pp.

    • Search Google Scholar
    • Export Citation
  • Drucker, R., S. Martin, and R. Moritz, 2003: Observations of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite imagery, upward looking sonar, and salinity/temperature moorings. J. Geophys. Res., 108 , 3149. doi:10.1029/2001JC001213.

    • Search Google Scholar
    • Export Citation
  • Dukowicz, J. K., and R. D. Smith, 1994: Implicit free-surface method for the Bryan-Cox-Semtner ocean model. J. Geophys. Res., 99 , 79918014.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., and W. D. Hibler III, 1995: Ridging and strength in modeling the thickness distribution of Arctic sea ice. J. Geophys. Res., 100 , 1861118626.

    • Search Google Scholar
    • Export Citation
  • Gill, A., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Grebmeier, J. M., and C. P. McRoy, 1989: Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi seas. III. Benthic food supply and carbon cycling. Mar. Ecol. Prog. Ser., 53 , 7991.

    • Search Google Scholar
    • Export Citation
  • Grebmeier, J. M., and L. W. Cooper, 1995: Influence of the St. Lawrence Island Polynya upon the Bering Sea benthos. J. Geophys. Res., 100 , 44394460.

    • Search Google Scholar
    • Export Citation
  • Grebmeier, J. M., and Coauthors, 2006: A major ecosystem shift in the northern Bering Sea. Science, 311 , 14611464.

  • Hermann, A. J., P. J. Stabeno, D. B. Haidvogel, and D. L. Musgrave, 2002: A regional tidal/subtidal circulation model of the southeastern Bering Sea: Development, sensitivity analyses and hindcasting. Deep-Sea Res. II, 49 , 59455967.

    • Search Google Scholar
    • Export Citation
  • Hibler III, W. D., 1980: Modeling a variable thickness sea ice cover. Mon. Wea. Rev., 108 , 19431973.

  • Holland, D. M., cited 2000: Merged IBCAO/ETOPO5 global topographic data product. National Geophysical Data Center (NGDC). [Available online at http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/ibcaorelatedsites.html].

    • Search Google Scholar
    • Export Citation
  • Hunt Jr., G. L., and P. J. Stabeno, 2002: Climate change and the control of energy flow in the southeastern Bering Sea. Prog. Oceanogr., 55 , 422.

    • Search Google Scholar
    • Export Citation
  • Hunt Jr., G. L., P. J. Stabeno, G. Walters, E. Sinclair, R. D. Brodeur, J. M. Napp, and N. A. Bond, 2002: Climate change and control of the southeastern Bering Sea pelagic ecosystem. Deep-Sea Res. II, 49 , 58215853.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kantha, L. H., and G. L. Mellor, 1989: A two-dimensional coupled ice-ocean model of the Bering Sea marginal ice zone. J. Geophys. Res., 94 , 1092110935.

    • Search Google Scholar
    • Export Citation
  • Kinder, T. H., and J. D. Schumacher, 1981: Circulation over the continental shelf of the southeastern Bering Sea. The Eastern Bering Sea Shelf: Oceanography and Resources, D. W. Hood and J. A. Calder, Eds., University of Washington Press, 53–75.

    • Search Google Scholar
    • Export Citation
  • Kowalik, Z., and P. Stabeno, 1999: Trapped motion around the Pribilof Islands in the Bering Sea. J. Geophys. Res., 104 , 2566725684.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Macklin, S. A., V. I. Radchenko, S. Saitoh, and P. J. Stabeno, 2002: Variability in the Bering Sea ecosystem. Prog. Oceanogr., 55 , 14.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78 , 10691079.

    • Search Google Scholar
    • Export Citation
  • Marchuk, G. I., and B. A. Kagan, 1989: Dynamics of Ocean Tides. Kluwer Academic, 327 pp.

  • Maykut, G. A., 1982: Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res., 87 , 79717984.

  • Niebauer, H. J., and R. H. Day, 1989: Causes of interannual variability in the sea ice cover of the eastern Bering Sea. GeoJournal, 18 , 4559.

    • Search Google Scholar
    • Export Citation
  • Niebauer, H. J., N. A. Bond, L. P. Yakunin, and V. V. Plotnikov, 1999: An update on the climatology and sea ice of the Bering Sea. Dynamics of the Bering Sea: A Summary of Physical, Chemical, and Biological Characteristics, and a Synopsis of Research on the Bering Sea, T. R. Loughlin and K. Ohtani, Eds., North Pacific Marine Science Organization (PICES), 29–59.

    • Search Google Scholar
    • Export Citation
  • Okkonen, S. R., G. M. Schmidt, E. D. Cokelet, and P. J. Stabeno, 2004: Satellite and hydrographic observations of the Bering Sea ‘Green Belt’. Deep-Sea Res. II, 51 , 10331051.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and P. J. Stabeno, 2004: Is the climate of the Bering Sea warming and affecting the ecosystem? Eos, Trans. Amer. Geophys. Union, 85 .doi:10.1029/2004EO330001.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., J. M. Adams, and N. A. Bond, 1999: Decadal variability of the Aleutian low and its relation to high-latitude circulation. J. Climate, 12 , 15421548.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., N. A. Bond, and J. M. Adams, 2001: North Pacific atmospheric and SST anomalies in 1997: Links to ENSO? Fish. Oceanogr., 10 , 6980.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., S. Rodionov, S. Minobe, and N. Bond, 2008: North Pacific regime shifts: Definitions, issues, and recent transitions. Prog. Oceanogr., 77 , 92102.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., and W. M. Washington, 1979: A large-scale numerical model of sea ice. J. Geophys. Res., 84 , 311337.

  • Pearson, C. A., H. O. Mofjeld, and R. B. Tripp, 1981: Tides of the eastern Bering Sea shelf. The Eastern Bering Sea Shelf: Oceanography and Resources, D. W. Hood and J. A. Calder, Eds., University of Washington Press, 111–130.

    • Search Google Scholar
    • Export Citation
  • Pease, C. H., 1980: Eastern Bering Sea ice processes. Mon. Wea. Rev., 108 , 20152023.

  • Pease, C. H., 1987: The size of wind-driven coastal polynyas. J. Geophys. Res., 92 , 70497059.

  • Pease, C. H., and J. E. Overland, 1989: An atmospherically driven sea ice drift model for the Bering Sea. Ann. Glaciol., 5 , 111114.

  • Prange, M., and G. Lohmann, 2004: Variable freshwater input to the Arctic Ocean during the Holocene: Implications for large-scale ocean-sea ice dynamics as simulated by a circulation model. The Climate in Historical Times: Towards a Synthesis of Holocene Proxy Data and Climate Models, H. Fischer et al., Eds., Springer, 319–336.

    • Search Google Scholar
    • Export Citation
  • Pritchard, R. S., A. C. Mueller, D. J. Hanzlick, and Y-S. Yang, 1990: Forecasting Bering Sea ice edge behavior. J. Geophys. Res., 95 , 775788.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and D. C. Marsico, 1993: An improved real-time global sea surface temperature analysis. J. Climate, 6 , 114119.

  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20 , 54735496.

    • Search Google Scholar
    • Export Citation
  • Roach, A. T., K. Aagaard, C. H. Pease, S. A. Salo, T. Weingartner, V. Pavlov, and M. Kulakov, 1995: Direct measurements of transport and water properties through Bering Strait. J. Geophys. Res., 100 , 1844318457.

    • Search Google Scholar
    • Export Citation
  • Rothrock, D. A., and J. Zhang, 2005: Arctic Ocean sea ice volume: What explains its recent depletion? J. Geophys. Res., 110 , C01002. doi:10.1029/2004JC002282.

    • Search Google Scholar
    • Export Citation
  • Semtner Jr., A. J., 1986: Finite-difference formulation of a World Ocean model. Advanced Physical Oceanographic Numerical Modeling, J. J. O’Brien, Ed., D. Riedel, 187–202.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., J. K. Dukowicz, and R. C. Malone, 1992: Parallel ocean general circulation modeling. Physica D, 60 , 3861.

  • Springer, A. M., C. P. McRoy, and M. V. Flint, 1996: The Bering Sea Green Belt: Shelf edge processes and ecosystem production. Fish. Oceanogr., 5 , 205233.

    • Search Google Scholar
    • Export Citation
  • Stabeno, P. J., and J. E. Overland, 2001: Bering Sea shifts toward an earlier spring transition. Eos, Trans. Amer. Geophys. Union, 82 , 321.

    • Search Google Scholar
    • Export Citation
  • Stabeno, P. J., J. D. Schumacher, and K. Ohtani, 1999: The physical oceanography of the Bering Sea. Dynamics of the Bering Sea: A Summary of Physical, Chemical, and Biological Characteristics, and a Synopsis of Research on the Bering Sea, T. R. Loughlin and K. Ohtani, Eds., North Pacific Marine Science Organization (PICES), 1–28.

    • Search Google Scholar
    • Export Citation
  • Stabeno, P. J., N. B. Kachel, M. Sullivan, and T. E. Whitledge, 2002: Variability of physical and chemical characteristics along the 70-m isobath of the southeastern Bering Sea. Deep-Sea Res. II, 49 , 59315943.

    • Search Google Scholar
    • Export Citation
  • Stabeno, P. J., N. A. Bond, and S. A. Salo, 2007: On the recent warming of the southeastern Bering Sea shelf. Deep-Sea Res. II, 54 , 25992618. doi:10.1016/j.dsr2.2007.08.023.

    • Search Google Scholar
    • Export Citation
  • Stabeno, P. J., C. Ladd, and R. K. Reed, 2009: Observations of the Aleutian North Slope Current, Bering Sea, 1996–2001. J. Geophys. Res., 114 , C05015. doi:10.1029/2007JC004705.

    • Search Google Scholar
    • Export Citation
  • Stockwell, D. A., T. E. Whitledge, S. I. Zeeman, K. O. Coyle, J. M. Napp, R. D. Brodeur, A. I. Pinchuk, and G. L. Hunt Jr., 2001: Anomalous conditions in the south-eastern Bering Sea, 1997: Nutrients, phytoplankton and zooplankton. Fish. Oceanogr., 10 , 99116.

    • Search Google Scholar
    • Export Citation
  • Stringer, W. J., and J. E. Grove, 1991: Location and areal extent of polynyas in the Bering and Chukchi Seas. Arctic, 44 , 164171.

  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Thorndike, A. S., D. A. Rothrock, G. A. Maykut, and R. Colony, 1975: The thickness distribution of sea ice. J. Geophys. Res., 80 , 45014513.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific. Climate Dyn., 9 , 303319.

  • Wang, J., H. Hu, K. Mizobata, and S. Saitoh, 2009: Seasonal variations of sea ice and ocean circulation in the Bering Sea: A model-data fusion study. J. Geophys. Res., 114 , C02011. doi:10.1029/2008JC004727.

    • Search Google Scholar
    • Export Citation
  • Whitledge, T. E., and Coauthors, 1988: Biological measurements and related chemical features in Soviet and United States regions of the Bering Sea. Cont. Shelf Res., 8 , 12991319.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17 , 525531.

  • Woodgate, R. A., K. Aagaard, and T. J. Weingartner, 2005: Monthly temperature, salinity, and transport variability of the Bering Strait through flow. Geophys. Res. Lett., 32 , L04601. doi:10.1029/2004GL021880.

    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., K. Aagaard, and T. J. Weingartner, 2006: Interannual changes in the Bering Strait fluxes of volume, heat and freshwater between 1991 and 2004. Geophys. Res. Lett., 33 , L15609. doi:10.1029/2006GL026931.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., 2005: Warming of the arctic ice-ocean system is faster than the global average since the 1960s. Geophys. Res. Lett., 32 , L19602. doi:10.1029/2005GL024216.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and W. D. Hibler III, 1991: On the role of ocean circulation in seasonal and interannual ice-edge variations in the Bering Sea. Ann. Glaciol., 15 , 3744.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and W. D. Hibler III, 1997: On an efficient numerical method for modeling sea ice dynamics. J. Geophys. Res., 102 , 86918702.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and D. A. Rothrock, 2001: A thickness and enthalpy distribution sea-ice model. J. Phys. Oceanogr., 31 , 29863001.

  • Zhang, J., and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131 , 681697.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and D. A. Rothrock, 2005: Effect of sea ice rheology in numerical investigations of climate. J. Geophys. Res., 110 , C08014. doi:10.1029/2004JC002599.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. Lindsay, M. Steele, and A. Schweiger, 2008: What drove the dramatic retreat of Arctic sea ice during summer 2007? Geophys. Res. Lett., 35 , L11505. doi:10.1029/2008GL034005.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 567 257 58
PDF Downloads 421 148 17