A New Parameterization for Entrainment in Overflows

Claudia Cenedese Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Claudia Cenedese in
Current site
Google Scholar
PubMed
Close
and
Claudia Adduce Dipartimento di Scienze dell’Ingegneria Civile, Universita’ RomaTre, Rome, Italy

Search for other papers by Claudia Adduce in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Dense overflows entrain surrounding waters at specific locations, for example, sills and constrictions, but also along the descent over the continental slope. The amount of entrainment dictates the final properties of these overflows, and thus is of fundamental importance to the understanding of the formation of deep water masses. Even when resolving the overflows, coarse resolution global circulation and climate models cannot resolve the entrainment processes that are often parameterized. A new empirical parameterization is suggested, obtained using an oceanic and laboratory dataset, which includes two novel aspects. First, the parameterization depends on both the Froude number (Fr) and Reynolds number of the flow. Second, it takes into account subcritical (Fr < 1) entrainment. A weak, but nonzero, entrainment can change the final density and, consequently, the depth and location of important water masses in the open ocean. This is especially true when the dense current follows a long path over the slope in a subcritical regime, as observed in the southern Greenland Deep Western Boundary Current. A streamtube model employing this new parameterization gives results that are more consistent with previous laboratory and oceanographic observations than when a classical parameterization is used. Finally, the new parameterization predictions compare favorably to recent oceanographic measurements of entrainment and turbulent diapycnal mixing rates, using scaling arguments to relate the entrainment ratio to diapycnal diffusivities.

Corresponding author address: Claudia Cenedese, Woods Hole Oceanographic Institution, 360 Woods Hole Rd., Woods Hole, MA 02536. Email: ccenedese@whoi.edu

Abstract

Dense overflows entrain surrounding waters at specific locations, for example, sills and constrictions, but also along the descent over the continental slope. The amount of entrainment dictates the final properties of these overflows, and thus is of fundamental importance to the understanding of the formation of deep water masses. Even when resolving the overflows, coarse resolution global circulation and climate models cannot resolve the entrainment processes that are often parameterized. A new empirical parameterization is suggested, obtained using an oceanic and laboratory dataset, which includes two novel aspects. First, the parameterization depends on both the Froude number (Fr) and Reynolds number of the flow. Second, it takes into account subcritical (Fr < 1) entrainment. A weak, but nonzero, entrainment can change the final density and, consequently, the depth and location of important water masses in the open ocean. This is especially true when the dense current follows a long path over the slope in a subcritical regime, as observed in the southern Greenland Deep Western Boundary Current. A streamtube model employing this new parameterization gives results that are more consistent with previous laboratory and oceanographic observations than when a classical parameterization is used. Finally, the new parameterization predictions compare favorably to recent oceanographic measurements of entrainment and turbulent diapycnal mixing rates, using scaling arguments to relate the entrainment ratio to diapycnal diffusivities.

Corresponding author address: Claudia Cenedese, Woods Hole Oceanographic Institution, 360 Woods Hole Rd., Woods Hole, MA 02536. Email: ccenedese@whoi.edu

Save
  • Aagaard, K., L. K. Coachman, and E. C. Carmack, 1981: On the halocline of the Arctic Ocean. Deep-Sea Res., 28 , 529–545.

  • Alavian, V., 1986: Behavior of density currents on an incline. J. Hydrol. Eng., 112 , 27–42.

  • Arneborg, L., V. Fiekas, L. Umlauf, and H. Burchard, 2007: Gravity current dynamics and entrainment—A process study based on observations in the Arkona Basin. J. Phys. Oceanogr., 37 , 2094–2113.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 2001: Mixing in flows down gentle slopes into stratified environments. J. Fluid Mech., 443 , 237–270.

  • Baines, P. G., 2002: Two-dimensional plumes in stratified environments. J. Fluid Mech., 471 , 315–337.

  • Baines, P. G., 2005: Mixing regimes for the flow of dense fluid down slopes into stratified environments. J. Fluid Mech., 538 , 245–267.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 2008: Mixing in downslope flows in the ocean–Plumes versus gravity currents. Atmos.–Ocean, 46 , 405–419.

    • Search Google Scholar
    • Export Citation
  • Baringer, M. O., and J. F. Price, 1997: Mixing and spreading of the Mediterranean outflow. J. Phys. Oceanogr., 27 , 1654–1677.

  • Bruce, J., 1995: Eddies southwest of the Denmark Strait. Deep-Sea Res., 42 , 13–29.

  • Canuto, V. M., Y. Chen, A. M. Howardand, and I. N. Esau, 2008: Stably stratified flows: A model with no Ri(cr). J. Atmos. Sci., 65 , 2437–2447.

    • Search Google Scholar
    • Export Citation
  • Cenedese, C., and C. Adduce, 2008: Mixing in a density-driven current flowing down a slope in a rotating fluid. J. Fluid Mech., 604 , 369–388.

    • Search Google Scholar
    • Export Citation
  • Cenedese, C., J. A. Whitehead, T. A. Ascarelli, and M. Ohiwa, 2004: A dense current flowing down a sloping bottom in a rotating fluid. J. Phys. Oceanogr., 34 , 188–203.

    • Search Google Scholar
    • Export Citation
  • Chang, Y. S., T. M. Özgökmen, H. Peters, and X. Xu, 2008: Numerical simulation of the Red Sea outflow using HYCOM and comparison with REDSOX observations. J. Phys. Oceanogr., 38 , 337–358.

    • Search Google Scholar
    • Export Citation
  • Dallimore, C. J., J. Imberger, and T. Ishikawa, 2001: Entrainment and turbulence in saline underflow in Lake Ogawara. J. Hydraul. Eng., 127 , 937–948.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., and J. Brown, 1994: The production of North Atlantic deep water: Sources, rates and pathways. J. Geophys. Res., 99C , 12319–12341.

    • Search Google Scholar
    • Export Citation
  • Dimotakis, P. E., 2005: Turbulent mixing. Annu. Rev. Fluid Mech., 37 , 329–356.

  • Ellison, T. H., and J. S. Turner, 1959: Turbulent entrainment in stratified flows. J. Fluid Mech., 6 , 423–448.

  • Ezer, T., 2005: Entrainment, diapycnal mixing and transport in three-dimensional bottom gravity current simulations using the Mellor-Yamada turbulence scheme. Ocean Modell., 9 , 151–168.

    • Search Google Scholar
    • Export Citation
  • Ezer, T., 2006: Topographic influence on overflow dynamics: Idealized numerical simulations and the Faroe Bank Channel overflow. J. Geophys. Res., 111 , C02002. doi:10.1029/2005JC003195.

    • Search Google Scholar
    • Export Citation
  • Fer, I., G. Voet, K. S. Seim, B. Rudels, and K. Latarius, 2010: Intense mixing of the Faroe Bank Channel overflow. Geophys. Res. Lett., 37 , L026042. doi:10.1029/2009GL041924.

    • Search Google Scholar
    • Export Citation
  • Foster, T. D., and E. C. Carmack, 1976: Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep-Sea Res., 23 , 301–317.

    • Search Google Scholar
    • Export Citation
  • Girton, J. B., and T. B. Sanford, 2003: Descent and modification of the overflow plume in Denmark Strait. J. Phys. Oceanogr., 33 , 1351–1364.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R. W., 2000: Time integration of diapycnal diffusion and Richardson number-dependent mixing in isopycnal coordinate ocean models. Mon. Wea. Rev., 128 , 1402–1419.

    • Search Google Scholar
    • Export Citation
  • Hughes, G. O., and R. W. Griffiths, 2006: A simple convective model of the global overturning circulation, including effects of entrainment into sinking regions. Ocean Modell., 12 , 46–79.

    • Search Google Scholar
    • Export Citation
  • Ilicak, M., T. M. Özgökmen, H. Peters, H. Z. Baumert, and M. Iskandarani, 2008a: Very large eddy simulation of the Red Sea overflow. Ocean Modell., 20 , 183–206.

    • Search Google Scholar
    • Export Citation
  • Ilicak, M., T. M. Özgökmen, H. Peters, H. Z. Baumert, and M. Iskandarani, 2008b: Performance of two-equation turbulence closures in three-dimensional simulations of the Red Sea overflow. Ocean Modell., 24 , 122–139.

    • Search Google Scholar
    • Export Citation
  • Ilicak, M., T. M. Özgökmen, E. Özsoy, and P. F. Fischer, 2009: Non-hydrostatic modeling of exchange flows across complex geometries. Ocean Modell., 29 , 159–175.

    • Search Google Scholar
    • Export Citation
  • Jackson, L., R. W. Hallberg, and S. Legg, 2008: A parameterization of shear-driven turbulence for ocean climate models. J. Phys. Oceanogr., 38 , 1033–1053.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and J. O. Backhaus, 1994: Application of a transient reduced gravity plume model to the Denmark Strait overflow. J. Geophys. Res., 99C , 12375–12396.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., J. Hauser, and R. H. Käse, 2001: Cyclogenesis in the Denmark Strait overflow plume. J. Phys. Oceanogr., 31 , 3214–3229.

    • Search Google Scholar
    • Export Citation
  • Käse, R. H., J. B. Girton, and T. B. Sanford, 2003: Structure and variability of the Denmark Strait Overflow: Model and observations. J. Geophys. Res., 108 , 3181. doi:10.1029/2002JC001548.

    • Search Google Scholar
    • Export Citation
  • Krauss, W., 1996: A note on overflow eddies. Deep-Sea Res., 43 , 1661–1667.

  • Lauderdale, J. M., S. Bacon, A. C. Naveira Garabato, and N. P. Holliday, 2008: Intensified turbulent mixing in the boundary current system of Southern Greenland. Geophys. Res. Lett., 35 , L04611. doi:10.1029/2007GL032785.

    • Search Google Scholar
    • Export Citation
  • Legg, S., R. W. Hallberg, and J. B. Girton, 2006: Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and nonhydrostatic models. Ocean Modell., 11 , 69–97.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and Coauthors, 2009: Improving oceanic overflow representation in climate models: The Gravity Current Entrainment Climate Process Team. Bull. Amer. Meteor. Soc., 90 , 657–670.

    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., J. Price, T. Sanford, and D. Torres, 2005: Circulation and mixing in the Faroese Channels. Deep-Sea Res. II, 52 , 883–913.

    • Search Google Scholar
    • Export Citation
  • Muench, R., L. Padman, A. Gordon, and A. Orsi, 2009: A dense water outflow from the Ross Sea, Antarctica: Mixing and the contribution of tides. J. Mar. Syst., 77 , 369–387.

    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., and P. F. Fischer, 2008: On the role of bottom roughness in overflows. Ocean Modell., 20 , 336–361.

  • Özgökmen, T. M., P. F. Fischer, and W. E. Johns, 2006: Product water mass formation by turbulent density currents from a high-order nonhydrostatic spectral element model. Ocean Modell., 12 , 237–267.

    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., T. Iliescu, and P. F. Fischer, 2009: Reynolds number dependence of mixing in a lock-exchange system from direct numerical and large eddy simulations. Ocean Modell., 30 , 190–206.

    • Search Google Scholar
    • Export Citation
  • Padman, L., S. L. Howard, A. Orsi, and R. Muench, 2009: Tides of the northwestern Ross Sea and their impact on dense outflows of Antarctic Bottom Water. Deep-Sea Res. II, 56 , 818–834.

    • Search Google Scholar
    • Export Citation
  • Pawlak, G., and L. Armi, 2000: Mixing and entrainment in developing stratified currents. J. Fluid Mech., 424 , 45–73.

  • Peters, H., and W. E. Johns, 2005: Mixing and entrainment in the Red Sea outflow plume. Part II: Turbulence characteristics. J. Phys. Oceanogr., 35 , 584–600.

    • Search Google Scholar
    • Export Citation
  • Peters, H., W. E. Johns, A. S. Bower, and D. M. Fratantoni, 2005: Mixing and entrainment in the Red Sea outflow plume. Part I: Plume structure. J. Phys. Oceanogr., 35 , 569–583.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276 , 93–96.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., and M. O. Baringer, 1994: Outflows and deep water production by marginal seas. Prog. Oceanogr., 33 , 161–200.

  • Price, J. F., and Coauthors, 1993: Mediterranean outflow mixing and dynamics. Science, 259 , 1277–1282.

  • Riemenschneider, U., and S. Legg, 2007: Regional simulations of the Faroe Bank Channel overflow in a level model. Ocean Modell., 17 , 93–122. doi:10.1016/j.ocemod.2007.01.003.

    • Search Google Scholar
    • Export Citation
  • Ross, A. N., P. F. Linden, and S. B. Dalziel, 2002: A study of three-dimensional gravity currents on a uniform slope. J. Fluid Mech., 453 , 239–261.

    • Search Google Scholar
    • Export Citation
  • Saunders, P. M., 1990: Cold outflow from the Faroe Bank Channel. J. Phys. Oceanogr., 20 , 29–43.

  • Smith, P. C., 1975: A streamtube model for bottom boundary currents in the ocean. Deep-Sea Res., 22 , 853–873.

  • Turner, J. S., 1986: Turbulent entrainment: The development of the entrainment assumption and its application to geophysical flows. J. Fluid Mech., 170 , 431–471.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and L. Arneborg, 2009a: Dynamics of rotating shallow gravity currents passing through a channel. Part I: Observation of transverse structure. J. Phys. Oceanogr., 39 , 2385–2401.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and L. Arneborg, 2009b: Dynamics of rotating shallow gravity currents passing through a channel. Part II: Analysis. J. Phys. Oceanogr., 39 , 2402–2416.

    • Search Google Scholar
    • Export Citation
  • WÃ¥hlin, A. K., and C. Cenedese, 2006: How entraining density currents influence the ocean stratification. Deep-Sea Res. II, 53 , 172–193.

    • Search Google Scholar
    • Export Citation
  • Wells, M. G., 2007: Influence of Coriolis forces on turbidity currents and sediment deposition. Particle-Laden Flow: From Geophysical to Kolmogorov Scales, B. J. Geurts, H. Clercx, and W. Uijttewaal, Eds., ERCOFTAC Series, 331–343.

    • Search Google Scholar
    • Export Citation
  • Wells, M. G., and J. S. Wettlaufer, 2005: Two-dimensional density currents in a confined basin. Geophys. Astrophys. Fluid Dyn., 99 , 199–218.

    • Search Google Scholar
    • Export Citation
  • Wells, M. G., C. Cenedese, and C. P. Caulfield, 2010: The relationship between flux coefficient gamma and entrainment ratio E in density currents. J. Phys. Oceanogr., in press.

    • Search Google Scholar
    • Export Citation
  • Xu, X., Y. S. Chang, H. Peters, T. M. Özgökmen, and E. P. Chassignet, 2006: Parameterization of gravity current entrainment for ocean circulation models using a high-order 3D nonhydrostatic spectral element model. Ocean Modell., 14 , 19–44.

    • Search Google Scholar
    • Export Citation
  • Xu, X., E. P. Chassignet, J. F. Price, T. M. Özgökmen, and H. Peters, 2007: A regional modeling study of the entraining Mediterranean outflow. J. Geophys. Res., 112 , C12005. doi:10.1029/2007JC004145.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 438 177 16
PDF Downloads 292 78 14