• Ayotte, K. W., and Coauthors, 1996: An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations. Bound.-Layer Meteor., 79 , 131175.

    • Search Google Scholar
    • Export Citation
  • Craig, P. D., and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24 , 25462559.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73 , 401426.

  • Crawford, G. B., and W. G. Large, 1996: A numerical investigation of resonant inertial response of the ocean to wind forcing. J. Phys. Oceanogr., 26 , 873891.

    • Search Google Scholar
    • Export Citation
  • D’Alessio, J. S. D., K. Abdella, and N. A. McFarlane, 1998: A new second-order turbulence closure scheme for modeling the ocean mixed layer. J. Phys. Oceanogr., 28 , 16241641.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., R. de Szoeke, and P. P. Niiler, 1981a: Variability in the upper ocean during MILE. Part I: The heat and momentum balances. Deep-Sea Res., 28 , 14271451.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., R. de Szoeke, and P. P. Niiler, 1981b: Variability in the upper ocean during MILE. Part II: Modeling the mixed layer response. Deep-Sea Res., 28 , 14531475.

    • Search Google Scholar
    • Export Citation
  • Denbo, D. W., and E. D. Skyllingstad, 1996: An ocean large-eddy simulation model with application to deep convection in the Greenland Sea. J. Geophys. Res., 101 , 10951110.

    • Search Google Scholar
    • Export Citation
  • Doran, J. C., 2004: Characteristics of intermittent turbulent temperature fluxes in stable conditions. Bound.-Layer Meteor., 112 , 241255.

    • Search Google Scholar
    • Export Citation
  • Driedonks, A. G. M., 1982: Models and observations of the growth of the atmospheric boundary layer. Bound.-Layer Meteor., 23 , 283306.

    • Search Google Scholar
    • Export Citation
  • Gaspar, P., 1988: Modeling the seasonal cycle of the upper ocean. J. Phys. Oceanogr., 18 , 161180.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 325 pp.

  • Kantha, L. H., and C. A. Clayson, 1994: An improved mixed layer model for geophysical applications. J. Geophys. Res., 99 , 2523525266.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and G. B. Crawford, 1995: Observations and simulations of upper-ocean response to wind events during the Ocean Storms Experiments. J. Phys. Oceanogr., 25 , 28312852.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Li, M., C. Garrette, and E. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res. I, 52 , 259278.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90 , 375396.

  • Martin, P. J., 1985: Simulation of the mixed layer at OWS November and Papa with several models. J. Geophys. Res., 90 , 903916.

  • Moeng, C. H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51 , 9991022.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., and E. B. Kraus, 1977: One-dimensional models of the upper ocean. Modelling and Prediction of the Upper Layers of the Ocean, E. B. Kraus, Ed., Pergamon, 143–172.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., and H. J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104 , 1562115634.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107 , 401427.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., H. S. Min, and S. Raasch, 2004: Large eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34 , 720735.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., G. Goh, S. Raasch, and M. Gryschka, 2009: Formation of a diurnal thermocline in the ocean mixed layer simulated by LES. J. Phys. Oceanogr., 39 , 12441257.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycles of current, temperature and turbulent diffusion in a model of the equatorial upper ocean. J. Geophys. Res., 91 , 84118427.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2006: Decadal variability in the formation of the North Pacific Subtropical Mode Water: Oceanic versus atmospheric control. J. Phys. Oceanogr., 36 , 13651380.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, and P. Hacker, 2004: Synoptic-scale air–sea flux forcing in the western North Pacific: Observations and their impact on SST and the mixed layer. J. Phys. Oceanogr., 34 , 21482159.

    • Search Google Scholar
    • Export Citation
  • Raasch, S., and D. Etling, 1991: Numerical simulation of rotating turbulent thermal convection. Contrib. Atmos. Phys., 3 , 115.

  • Skyllingstad, E. D., W. D. Smith, and G. B. Crawford, 2000: Resonant wind-driven mixing in the ocean boundary layer. J. Phys. Oceanogr., 30 , 18661890.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1986: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 478 pp.

  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593 , 405452.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2004: Langmuir circulation. Annu. Rev. Fluid Mech., 36 , 5579.

  • Wang, D., 2003: Entrainment laws and a bulk mixed layer model of rotating convection derived from large-eddy simulations. Geophys. Res. Lett., 30 , 1929. doi:10.1029/2003GL017869.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 140 83 2
PDF Downloads 72 49 2

Examination of the Mixed Layer Deepening Process during Convection Using LES

View More View Less
  • 1 Department of Atmospheric Sciences/Global Environmental Laboratory, Yonsei University, Seoul, South Korea
  • | 2 Institute of Meteorology and Climatology, University of Hannover, Hannover, Germany
Restricted access

Abstract

Analysis of large-eddy simulation data of the ocean mixed layer under convection reveals that the contribution from wind stress decreases with time as a result of inertial oscillation in the extratropical ocean and that it leads to a rapid increase of the bulk and gradient Richardson number at the mixed layer depth. The criteria for the mixed layer deepening in the widely used mixed layer models, such as the Niiler–Kraus (NK) model, the Price–Weller–Pinkel (PWP) model, and the K-profile parameterization (KPP) model, are examined in view of these results, and its implication on the model predictability is discussed.

Corresponding author address: Yign Noh, Department of Atmospheric Sciences/Global Environmental Laboratory, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea. Email: noh@yonsei.ac.kr

Abstract

Analysis of large-eddy simulation data of the ocean mixed layer under convection reveals that the contribution from wind stress decreases with time as a result of inertial oscillation in the extratropical ocean and that it leads to a rapid increase of the bulk and gradient Richardson number at the mixed layer depth. The criteria for the mixed layer deepening in the widely used mixed layer models, such as the Niiler–Kraus (NK) model, the Price–Weller–Pinkel (PWP) model, and the K-profile parameterization (KPP) model, are examined in view of these results, and its implication on the model predictability is discussed.

Corresponding author address: Yign Noh, Department of Atmospheric Sciences/Global Environmental Laboratory, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea. Email: noh@yonsei.ac.kr

Save