• Alves, J. H. G. M., and M. L. Banner, 2003: Performance of a saturation-based dissipation-rate source term in modeling the fetch-limited evolution of wind waves. J. Phys. Oceanogr., 33 , 12741298.

    • Search Google Scholar
    • Export Citation
  • Alves, J. H. G. M., M. L. Banner, and I. R. Young, 2003: Revisiting the Pierson–Moskowitz asymptotic limits for fully developed wind waves. J. Phys. Oceanogr., 33 , 13011323.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and A. D. Jenkins, 2005: On the effect of wind and turbulence on ocean swell. Proc. 15th Int. Polar and Offshore Engineering Conf., Vol. III, Seoul, South Korea, ISOPE, 429–434.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and A. D. Jenkins, 2006: On the interaction of surface waves and upper-ocean turbulence. J. Phys. Oceanogr., 36 , 551557.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and A. Le Boyer, 2006: Numerical modelling of sea states: Validation of spectral shapes (in French). Navigation, 54 , 5571.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., T. H. C. Herbers, K. P. Watts, G. P. van Vledder, R. Jessen, and H. Graber, 2007: Swell and slanting fetch effects on wind wave growth. J. Phys. Oceanogr., 37 , 908931.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., F. Collard, B. Chapron, P. Queffeulou, J-F. Filipot, and M. Hamon, 2008a: Spectral wave dissipation based on observations: a global validation. Proc. Chinese–German Joint Symp. on Hydraulics and Ocean Engineering, Darmstadt, Germany, Technische Universitat Darmstadt, 391–400. [Available online at http://www.comc.ncku.edu.tw/joint/joint2008/papers/69.pdf].

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., N. Rascle, and K. A. Belibassakis, 2008b: Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Modell., 20 , 3560. doi:10.1016/j.ocemod.2007.07.001.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., B. Chapron, and F. Collard, 2009a: Observation of swell dissipation across oceans. Geophys. Res. Lett., 36 , L06607. doi:10.1029/2008GL037030.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., L. Marié, N. Rascle, P. Forget, and A. Roland, 2009b: Observation and estimation of Lagrangian, Stokes, and Eulerian currents induced by wind and waves at the sea surface. J. Phys. Oceanogr., 39 , 28202838.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., and Y. P. Soloviev, 1998: Field investigation of transformation of the wind wave frequency spectrum with fetch and the stage of development. J. Phys. Oceanogr., 28 , 563576.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., and I. R. Young, 2005: Two-phase behaviour of the spectral dissipation of wind waves. Proc. Fifth Int. Symp. Ocean Wave Measurement and Analysis, Madrid, Spain, ASCE, Paper 51.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., and A. J. van der Westhuysen, 2008: Physics of saturation-based dissipation functions proposed for wave forecast models. J. Phys. Oceanogr., 38 , 18311841.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., I. Young, and M. Banner, 2001: Breaking probabilities for dominant surface waves on water of finite depth. J. Geophys. Res., 106 , 1165911676.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., K. Tsagareli, I. Young, and D. Walker, 2007: Implementation of new experimental input/dissipation terms for modelling spectral evolution of wind waves. Proc. 10th Int. Workshop on Wave Hindcasting and Forecasting, Oahu, HI, WMO/IOC Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM), C2. [Available online at http://www.waveworkshop.org/10thWaves/ProgramFrameset.htm].

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and I. R. Young, 1994: Modeling spectral dissipation in the evolution of wind waves. Part I: Assessment of existing model performance. J. Phys. Oceanogr., 24 , 15501570.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and W. L. Peirson, 2007: Wave breaking onset and strength for two-dimensional deep-water wave groups. J. Fluid Mech., 585 , 93115.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and R. P. Morison, 2010: Refined source terms in wind wave models with explicit wave breaking prediction. Part I: Model framework and validation against field data. Ocean Modell., 33 , 177189.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., I. S. F. Jones, and J. C. Trinder, 1989: Wavenumber spectra of short gravity waves. J. Fluid Mech., 198 , 321344.

  • Banner, M. L., A. V. Babanin, and I. R. Young, 2000: Breaking probability for dominant waves on the sea surface. J. Phys. Oceanogr., 30 , 31453160.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., J. R. Gemmrich, and D. M. Farmer, 2002: Multiscale measurement of ocean wave breaking probability. J. Phys. Oceanogr., 32 , 33643374.

    • Search Google Scholar
    • Export Citation
  • Barber, N. F., 1949: Behaviour of waves on tidal streams. Proc. Roy. Soc. London, 198A , 8193.

  • Bidlot, J-R., 2008: Intercomparison of operational wave forecasting systems against buoys: Data from ECMWF, Met Office, FNMOC, NCEP, DWD, BoM, SHOM and JMA, September 2008 to November 2008. JCOMM Tech. Rep., 66 pp. [Available online at http://www.jcomm-services.org/modules/documents/documents/model_comparison_second_list_200809_200811.pdf].

    • Search Google Scholar
    • Export Citation
  • Bidlot, J-R., S. Abdalla, and P. Janssen, 2005: A revised formulation for ocean wave dissipation in CY25R1. Research Dept. Tech. Rep. Memo. R60.9/JB/0516, ECMWF, Reading, United Kingdom, 35 pp.

    • Search Google Scholar
    • Export Citation
  • Bidlot, J-R., P. Janssen, and S. Abdalla, 2007a: A revised formulation of ocean wave dissipation and its model impact. ECMWF Tech. Rep. Memo. 509, Reading, United Kingdom, 27 pp.

    • Search Google Scholar
    • Export Citation
  • Bidlot, J-R., and Coauthors, 2007b: Inter-comparison of operational wave forecasting systems. Proc. 10th Int. Workshop on Wave Hindcasting and Forecasting, Oahu, HI, JCOMM, H1. [Available online at http://www.waveworkshop.org/10thWaves/Papers/paper_10th_workshop_Bidlot_at_al.pdf].

    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., 2006: Wave modeling where to go in the future. Bull. Amer. Meteor. Soc., 87 , 207214.

  • Cavaleri, L., 2009: Wave modeling—Missing the peaks. J. Phys. Oceanogr., 39 , 27572778.

  • Chalikov, D. V., 1993: Comments on “Wave-induced stress and the drag of air flow over sea waves” and “Quasi-linear theory of wind-wave generation applied to wave forecasting”. J. Phys. Oceanogr., 23 , 15971600.

    • Search Google Scholar
    • Export Citation
  • Chalikov, D. V., and M. Y. Belevich, 1993: One-dimensional theory of the wave boundary layer. Bound.-Layer Meteor., 63 , 6596.

  • Chen, G., and S. E. Belcher, 2000: Effects of long waves on wind-generated waves. J. Phys. Oceanogr., 30 , 22462256.

  • Collard, F., A. Mouche, B. Chapron, C. Danilo, and J. Johannessen, 2008: Routine high resolution observation of selected major surface currents from space. Proc. SEASAR 2008, ESA–ESRIN, Frascati, Italy, SP-656. [Available online at http://earth.esa.int/workshops/seasar2008/participants/287/pres_287_Collard.pdf].

    • Search Google Scholar
    • Export Citation
  • Collard, F., F. Ardhuin, and B. Chapron, 2009: Monitoring and analysis of ocean swell fields using a spaceborne SAR: A new method for routine observations. J. Geophys. Res., 114 , C07023. doi:10.1029/2008JC005215.

    • Search Google Scholar
    • Export Citation
  • Dalrymple, R. A., 1974: A finite amplitude wave on a linear shear current. J. Geophys. Res., 79 , 44984504.

  • Darbyshire, J., 1958: The generation of waves by wind. Philos. Trans. Roy. Soc. London, 215A , 299428.

  • Dobson, F., W. Perrie, and B. Toulany, 1989: On the deep water fetch laws for wind-generated surface gravity waves. Atmos.–Ocean, 27 , 210236.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1998: Air-water exchange processes. Physical Processes in Lakes and Oceans, J. Imberger, Ed., Amer. Geophys. Union, 18–36.

    • Search Google Scholar
    • Export Citation
  • Dore, B. D., 1978: Some effects of the air–water interface on gravity waves. Geophys. Astrophys. Fluid Dyn., 10 , 215230.

  • Filipot, J-F., F. Ardhuin, and A. Babanin, 2010: A unified deep-to-shallow water wave-breaking probability parameterization. J. Geophys. Res., 115 , C04022. doi:10.1029/2009JC005448.

    • Search Google Scholar
    • Export Citation
  • Gelci, R., H. Cazalé, and J. Vassal, 1957: Prévision de la houle. La méthode des densités spectroangulaires. Bull. Inform. Com. Océanogr. Etude Côtes, 9 , 416435.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., M. L. Banner, and C. Garrett, 2008: Spectrally resolved energy dissipation rate and momentum flux of breaking waves. J. Phys. Oceanogr., 38 , 12961312.

    • Search Google Scholar
    • Export Citation
  • Gourrion, J., D. Vandemark, S. Bailey, and B. Chapron, 2002: Investigation of C-band altimeter cross section dependence on wind speed and sea state. Can. J. Remote Sens., 28 , 484489.

    • Search Google Scholar
    • Export Citation
  • Grant, W. D., and O. S. Madsen, 1979: Combined wave and current interaction with a rough bottom. J. Geophys. Res., 84 , 17971808.

  • Hargreaves, J. C., and J. D. Annan, 2000: Comments on improvement of the short-fetch behavior in the Wave Ocean Model (WAM). J. Atmos. Oceanic Technol., 18 , 711715.

    • Search Google Scholar
    • Export Citation
  • Harris, D. L., 1966: The wave-driven wind. J. Atmos. Sci., 23 , 688693.

  • Hasselmann, K., 1971: On the mass and momentum transfer between short gravity waves and larger-scale motions. J. Fluid Mech., 4 , 189205.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1974: On the spectral dissipation of ocean waves due to white capping. Bound.-Layer Meteor., 6 , 107127.

  • Hasselmann, S., K. Hasselmann, J. Allender, and T. Barnett, 1985: Computation and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15 , 13781391.

    • Search Google Scholar
    • Export Citation
  • Högström, U., A. Smedman, E. Sahleé, H. Pettersson, and F. Zhang, 2009: The atmospheric boundary layer during swell: A field study and interpretation of the turbulent kinetic energy budget for high wave ages. J. Atmos. Sci., 66 , 27642779.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1991: Quasi-linear theory of wind wave generation applied to wave forecasting. J. Phys. Oceanogr., 21 , 16311642.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 2009: On some consequences of the canonical transformation in the Hamiltonian theory of water waves. J. Fluid Mech., 637 , 144.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., K. Hasselmann, S. Hasselmann, and G. J. Komen, 1994: Parameterization of source terms and the energy balance in a growing wind sea. Dynamics and Modelling of Ocean Waves, G. J. Komen et al., Eds., Cambridge University Press, 215–238.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., O. Saetra, C. Wettre, and H. Hersbach, 2004: Impact of the sea state on the atmosphere and ocean. Ann. Hydrogr., 3 , 3-13-23.

    • Search Google Scholar
    • Export Citation
  • Jensen, B. L., B. M. Sumer, and J. Fredsøe, 1989: Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech., 206 , 265297.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., K. Hasselmann, and S. Hasselmann, 1984: On the existence of a fully developed windsea spectrum. J. Phys. Oceanogr., 14 , 12711285.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 554 pp.

    • Search Google Scholar
    • Export Citation
  • Lefèvre, J-M., S. E. Ştefǎnescu, and V. Makin, 2004: Implementation of new source terms in a third generation wave model. Preprints, Third Int. Workshop on Wave Hindcasting and Forecasting, Montreal, QC, Canada, Environment Canada, E4. [Available online at http://www.waveworkshop.org/8thWaves/Papers/E4.pdf].

    • Search Google Scholar
    • Export Citation
  • Long, C. E., and D. T. Resio, 2007: Wind wave spectral observations in Currituck Sound, North Carolina. J. Geophys. Res., 112 , C05001. doi:10.1029/2006JC003835.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and J. S. Turner, 1974: An ‘entraining plume’ model of a spilling breaker. J. Fluid Mech., 63 , 120.

  • Magne, R., K. Belibassakis, T. H. C. Herbers, F. Ardhuin, W. C. O’Reilly, and V. Rey, 2007: Evolution of surface gravity waves over a submarine canyon. J. Geophys. Res., 112 , C01002. doi:10.1029/2005JC003035.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., and M. Stam, 2003: New drag formulation in NEDWAM. KNMI Tech. Rep. 250, Koninklijk Nederlands Meteorologisch Instituut, De Bilt, Netherlands, 16 pp.

    • Search Google Scholar
    • Export Citation
  • Manasseh, R., A. V. Babanin, C. Forbes, K. Rickards, I. Bobevski, and A. Ooi, 2006: Passive acoustic determination of wave-breaking events and their severity across the spectrum. J. Atmos. Oceanic Technol., 23 , 599618.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., F. Verron, and C. J. White, 2002: The velocity field under breaking waves: Coherent structures and turbulence. J. Fluid Mech., 454 , 203233.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and M. A. Traylor, 1947: Refraction of ocean waves: A process linking underwater topography to beach erosion. J. Geol., LV , 126.

    • Search Google Scholar
    • Export Citation
  • Peirson, W. L., and M. L. Banner, 2003: Aqueous surface layer flows induced by microscale breaking wind waves. J. Fluid Mech., 479 , 138.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1958: The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech., 4 , 426433.

  • Phillips, O. M., 1963: On the attenuation of long gravity waves by short breaking waves. J. Fluid Mech., 16 , 321332.

  • Phillips, O. M., 1984: On the response of short ocean wave components at a fixed wavenumber to ocean current variations. J. Phys. Oceanogr., 14 , 14251433.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156 , 505531.

    • Search Google Scholar
    • Export Citation
  • Pierson Jr., W. J., and L. Moskowitz, 1964: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69 , 181185, 190.

    • Search Google Scholar
    • Export Citation
  • Polnikov, V. G., and V. Inocentini, 2008: Comparative study of performance of wind wave model: Wavewatch modified by new source function. Eng. Appl. Comput. Fluid Mech., 2 , 466481.

    • Search Google Scholar
    • Export Citation
  • Queffeulou, P., and D. Croizé-Fillon, 2008: Global altimeter SWH data set, version 4, october 2008. Ifremer Tech. Rep., 13 pp. [Available online at ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves/documentation/altimeter_wave_merge__4.0.pdf].

    • Search Google Scholar
    • Export Citation
  • Rascle, N., F. Ardhuin, P. Queffeulou, and D. Croizé-Fillon, 2008: A global wave parameter database for geophysical applications. Part 1: Wave-current–turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Modell., 25 , 154171. doi:10.1016/j.ocemod.2008.07.006.

    • Search Google Scholar
    • Export Citation
  • Rogers, W. E., and D. W. C. Wang, 2007: Directional validation of wave predictions. J. Atmos. Oceanic Technol., 24 , 504520.

  • Rogers, W. E., P. A. Hwang, and D. W. Wang, 2003: Investigation of wave growth and decay in the SWAN model: Three regional-scale applications. J. Phys. Oceanogr., 33 , 366389.

    • Search Google Scholar
    • Export Citation
  • Ruessink, B. G., D. J. R. Walstra, and H. N. Southgate, 2003: Calibration and verification of a parametric wave model on barred beaches. Coastal Eng., 48 , 139149.

    • Search Google Scholar
    • Export Citation
  • Smedman, A., U. Högström, E. Sahleé, W. M. Drennan, K. K. Kahma, H. Pettersson, and F. Zhang, 2009: Observational study of marine atmospheric boundary layer characteristics during swell. J. Atmos. Sci., 66 , 27472763.

    • Search Google Scholar
    • Export Citation
  • Stansell, P., and C. MacFarlane, 2002: Experimental investigation of wave breaking criteria based on wave phase speeds. J. Phys. Oceanogr., 32 , 12691283.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 1992: Effects of numerics on the physics in a third-generation wind-wave model. J. Phys. Oceanogr., 22 , 10951111.

  • Tolman, H. L., 2002a: Limiters in third-generation wind wave models. Global Atmos. Oceanic Syst., 8 , 6783.

  • Tolman, H. L., 2002b: Validation of WAVEWATCH-III version 1.15. NOAA/NWS/NCEP/MMAB Tech. Rep. 213, 33 pp.

  • Tolman, H. L., 2003: Treatment of unresolved islands and ice in wind wave models. Ocean Modell., 5 , 219231.

  • Tolman, H. L., 2007: The 2007 release of WAVEWATCH III. Proc. 10th Int. Workshop of Wave Hindcasting and Forecasting, Oahu, HI, JCOMM, Q4. [Available online at http://www.waveworkshop.org/10thWaves/ProgramFrameset.htm].

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 2008: A mosaic approach to wind wave modeling. Ocean Modell., 25 , 3547. doi:10.1016/j.ocemod.2008.06.005.

  • Tolman, H. L., 2009: User manual and system documentation of WAVEWATCH-III version 3.14. NOAA/NWS/NCEP/MMAB Tech. Rep. 276, 220 pp.

  • Tolman, H. L., and D. Chalikov, 1996: Source terms in a third-generation wind wave model. J. Phys. Oceanogr., 26 , 24972518.

  • Tolman, H. L., and J-H. G. M. Alves, 2005: Numerical modeling of wind waves generated by tropical cyclones using moving grids. Ocean Modell., 9 , 305323.

    • Search Google Scholar
    • Export Citation
  • Tournadre, J., K. Whitmer, and F. Girard-Ardhuin, 2008: Iceberg detection in open water by altimeter waveform analysis. J. Geophys. Res., 113 , C08040. doi:10.1029/2007JC004587.

    • Search Google Scholar
    • Export Citation
  • Tsagareli, K., 2008: Numerical investigation of wind input and spectral dissipation in evolution of wind waves. Ph.D. thesis, University of Adelaide, Adelaide, SA, Australia, 219 pp.

  • Tulin, M. P., and M. Landrini, 2001: Breaking waves in the ocean and around ships. Proc. 23rd ONR Symp. on Naval Hydrodynamics, Val de Reuil, France, Naval Studies Board, 713–745.

    • Search Google Scholar
    • Export Citation
  • Vandemark, D., P. D. Mourad, S. A. Bailey, T. L. Crawford, C. A. Vogel, J. Sun, and B. Chapron, 2001: Measured changes in ocean surface roughness due to atmospheric boundary layer rolls. J. Geophys. Res., 106 , 46394654.

    • Search Google Scholar
    • Export Citation
  • Vandemark, D., B. Chapron, J. Sun, G. H. Crescenti, and H. C. Graber, 2004: Ocean wave slope observations using radar backscatter and laser altimeters. J. Phys. Oceanogr., 34 , 28252842.

    • Search Google Scholar
    • Export Citation
  • van der Westhuysen, A. J., 2007: Advances in the spectral modelling of wind waves in the nearshore. Ph.D. thesis, Delft University of Technology, Delft, Netherlands, 206 pp.

  • van der Westhuysen, A. J., M. Zijlema, and J. A. Battjes, 2007: Saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coastal Eng., 54 , 151170.

    • Search Google Scholar
    • Export Citation
  • van Vledder, G. P., and D. P. Hurdle, 2002: Performance of formulations for whitecapping in wave prediction models. Proc. OMAE.02 21st Int. Conf. on Offshore Mechanics and Arctic Engineering, Oslo, Norway, Ocean, Offshore and Arctic Engineering (OOAE) Division, American Society of Mechanical Engineers (ASME International), OMAE2002-28146.

    • Search Google Scholar
    • Export Citation
  • Violante-Carvalho, N., F. J. Ocampo-Torres, and I. S. Robinson, 2004: Buoy observations of the influence of swell on wind waves in the open ocean. Appl. Ocean Res., 26 , 4960.

    • Search Google Scholar
    • Export Citation
  • WAMDI Group, 1988: The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr., 18 , 17751810.

  • Wang, D. W., D. A. Mitchell, W. J. Teague, E. Jarosz, and M. S. Hulbert, 2005: Extreme waves under Hurricane Ivan. Science, 309 , 896.

  • WISE Group, 2007: Wave modelling–the state of the art. Prog. Oceanogr., 75 , 603674. doi:10.1016/j.pocean.2007.05.005.

  • Wu, C. H., and H. M. Nepf, 2002: Breaking criteria and energy losses for three-dimensional wave breaking. J. Geophys. Res., 107 , 3177. doi:10.1029/2001JC001077.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 2006: Directional spectra of hurricane wind waves. J. Geophys. Res., 111 , C08020. doi:10.1029/2006JC003540.

  • Young, I. R., and G. P. van Vledder, 1993: A review of the central role of nonlinear interactions in wind-wave evolution. Philos. Trans. Roy. Soc. London, 342A , 505524.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., and A. V. Babanin, 2006: Spectral distribution of energy dissipation of wind-generated waves due to dominant wave breaking. J. Phys. Oceanogr., 36 , 376394.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1768 1168 86
PDF Downloads 1283 781 35

Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation

View More View Less
  • * Service Hydrographique et Océanographique de la Marine, Brest, France
  • | # Oceanography Division, Naval Research Laboratory, Stennis Space Center, Mississippi
  • | @ Swinburne University, Hawthorn, Victoria, Australia
  • | 4 Technological University of Darmstadt, Darmstadt, Germany
  • | * * Deltares, Delft, Netherlands
  • | ++ UMR GAME, Météo-France–CNRS, Toulouse, France
  • | ## Radar Division, CLS, Plouzané, France
Restricted access

Abstract

New parameterizations for the spectral dissipation of wind-generated waves are proposed. The rates of dissipation have no predetermined spectral shapes and are functions of the wave spectrum and wind speed and direction, in a way consistent with observations of wave breaking and swell dissipation properties. Namely, the swell dissipation is nonlinear and proportional to the swell steepness, and dissipation due to wave breaking is nonzero only when a nondimensional spectrum exceeds the threshold at which waves are observed to start breaking. An additional source of short-wave dissipation is introduced to represent the dissipation of short waves due to longer breaking waves. A reduction of the wind-wave generation of short waves is meant to account for the momentum flux absorbed by longer waves. These parameterizations are combined and calibrated with the discrete interaction approximation for the nonlinear interactions. Parameters are adjusted to reproduce observed shapes of directional wave spectra, and the variability of spectral moments with wind speed and wave height. The wave energy balance is verified in a wide range of conditions and scales, from the global ocean to coastal settings. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Some systematic defects are still present, but, overall, the parameterizations probably yield the most accurate estimates of wave parameters to date. Perspectives for further improvement are also given.

+ Current affiliation: Laboratoire d’Océanographie Spatiale, Ifremer, Plouzané, France

Corresponding author address: Fabrice Ardhuin, Laboratoire d’Océanographie Spatiale, Ifremer, 29200 Plouzané, France. Email: ardhuin@ifremer.fr

Abstract

New parameterizations for the spectral dissipation of wind-generated waves are proposed. The rates of dissipation have no predetermined spectral shapes and are functions of the wave spectrum and wind speed and direction, in a way consistent with observations of wave breaking and swell dissipation properties. Namely, the swell dissipation is nonlinear and proportional to the swell steepness, and dissipation due to wave breaking is nonzero only when a nondimensional spectrum exceeds the threshold at which waves are observed to start breaking. An additional source of short-wave dissipation is introduced to represent the dissipation of short waves due to longer breaking waves. A reduction of the wind-wave generation of short waves is meant to account for the momentum flux absorbed by longer waves. These parameterizations are combined and calibrated with the discrete interaction approximation for the nonlinear interactions. Parameters are adjusted to reproduce observed shapes of directional wave spectra, and the variability of spectral moments with wind speed and wave height. The wave energy balance is verified in a wide range of conditions and scales, from the global ocean to coastal settings. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Some systematic defects are still present, but, overall, the parameterizations probably yield the most accurate estimates of wave parameters to date. Perspectives for further improvement are also given.

+ Current affiliation: Laboratoire d’Océanographie Spatiale, Ifremer, Plouzané, France

Corresponding author address: Fabrice Ardhuin, Laboratoire d’Océanographie Spatiale, Ifremer, 29200 Plouzané, France. Email: ardhuin@ifremer.fr

Save