• Bennett, A. F., 1984: Relative dispersion: Local and nonlocal dynamics. J. Atmos. Sci., 41 , 18811886.

  • Brown, M. G., 1998: Phase space structure and fractal trajectories in 1½ degree of freedom Hamiltonian systems whose time dependence is quasiperiodic. Nonlinear Processes Geophys., 5 , 6974.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28 , 10871095.

  • Egbert, G., and L. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19 , 183204.

  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Flather, R. A., 1976: A tidal model of the northwest European continental shelf. Mem. Soc. Roy. Sci. Liege, 6 , 141164.

  • Garrett, C., 1983: On the initial streakiness of a dispersing tracer in two- and three-dimensional turbulence. Dyn. Atmos. Oceans, 7 , 265277.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2001a: Distinguished material surfaces and coherent structures in 3D fluid flows. Physica D, 149 , 248277.

  • Haller, G., 2001b: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids, 13 , 33653385.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2002: Lagrangian coherent structures from approximate velocity data. Phys. Fluids, 14 , 18511861.

  • Haller, G., 2005: An objective definition of a vortex. J. Fluid Mech., 525 , 126.

  • Koh, T. Y., and R. A. Plumb, 2000: Lobe dynamics applied to barotropic Rossby wave breaking. Phys. Fluids, 12 , 15181528.

  • Koh, T. Y., and B. Legras, 2002: Hyperbolic lines and the stratospheric polar vortex. Chaos, 12 , 328394.

  • Kuznetsov, L., M. Toner, A. D. Kirwan, C. K. R. T. Jones, L. H. Kantha, and J. Choi, 2002: The Loop Current and adjacent rings delineated by Lagrangian analysis of the near-surface flow. J. Mar. Res., 60 , 405429.

    • Search Google Scholar
    • Export Citation
  • Lukovich, J. V., and T. G. Shepherd, 2005: Stirring and mixing in two-dimensional divergent flow. J. Atmos. Sci., 64 , 39333954.

  • Mancho, A. M., D. Small, S. Wiggins, and K. Ide, 2003: Computation of stable and unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vector fields. Physica D, 182 , 188222.

    • Search Google Scholar
    • Export Citation
  • Mancho, A. M., D. Small, and S. Wiggins, 2004: Computation of hyperbolic trajectories and their stable and unstable manifolds for oceanographic flows represented as data sets. Nonlinear Processes Geophys., 11 , 1733.

    • Search Google Scholar
    • Export Citation
  • Mancho, A. M., D. Small, and S. Wiggins, 2006: A tutorial on dynamical systems concepts applied to Lagrangian transport in oceanic flows defined as finite time data sets: Theoretical and computational issues. Phys. Rep., 437 , 55124.

    • Search Google Scholar
    • Export Citation
  • Miller, P. D., C. K. R. T. Jones, A. M. Rogerson, and L. J. Pratt, 1997: Quantifying transport in numerically generated velocity fields. Physica D, 110 , 105122.

    • Search Google Scholar
    • Export Citation
  • Miller, P. D., L. J. Pratt, K. R. Helrich, and C. K. R. T. Jones, 2002: Chaotic transport of mass and potential vorticity for an island recirculation. J. Phys. Oceanogr., 32 , 80102.

    • Search Google Scholar
    • Export Citation
  • Mizuta, R., and S. Yoden, 2001: Chaotic mixing and transport barriers in an idealized stratospheric polar vortex. J. Atmos. Sci., 58 , 26162629.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., H. G. Arango, E. Di Lorenzo, B. D. Cornuelle, A. J. Miller, and D. J. Neilson, 2004: A comprehensive ocean prediction and analysis system based on the tangent linear and adjoint of a regional ocean model. Ocean Modell., 7 , 227258.

    • Search Google Scholar
    • Export Citation
  • Ngan, K., and T. G. Shepherd, 1999a: A closer look at chaotic advection in the stratosphere. Part I: Geometric structure. J. Atmos. Sci., 56 , 41344152.

    • Search Google Scholar
    • Export Citation
  • Ngan, K., and T. G. Shepherd, 1999b: A closer look at chaotic advection in the stratosphere. Part II: Statistical diagnostics. J. Atmos. Sci., 56 , 41534166.

    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1971: Oceanic diffusion diagram. Deep-Sea Res., 18 , 789802.

  • Olascoaga, M. J., F. J. Beron-Vera, L. E. Brand, and H. Koçak, 2008: Tracing the early development of harmful algal blooms on the West Florida Shelf with the aid of Lagrangian Coherent Structures. J. Geophys. Res., 113 , C12014. doi:10.1029/2007JC004533.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2002: Stratospheric transport. J. Meteor. Soc. Japan, 80 , 793809.

  • Poje, A. C., and G. Haller, 1999: Geometry of cross-stream mixing in a double-gyre ocean model. J. Phys. Oceanogr., 29 , 16491665.

  • Pullen, J., J. D. Doyle, P. May, C. Chavanne, P. Flament, and R. A. Arnone, 2008: Monsoon surges trigger oceanic eddy formation and propagation in the lee of the Philippine Islands. Geophys. Res. Lett., 35 , L07604. doi:10.1029/2007GL033109.

    • Search Google Scholar
    • Export Citation
  • Rogerson, A., P. D. Miller, L. J. Pratt, and C. K. R. T. Jones, 1999: Lagrangian motion and fluid exchange in a barotropic meandering jet. J. Phys. Oceanogr., 29 , 26352655.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., M. G. Brown, F. J. Beron-Vera, H. Kocak, M. J. Olascoaga, and I. A. Udovydchenkov, 2007: On the Lagrangian dynamics of atmospheric zonal jets and the permeability of the stratospheric polar vortex. J. Atmos. Sci., 64 , 35933610.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., M. G. Brown, and H. Kocak, 2009: Transport in an idealized three-gyre system with an application to the Adriatic Sea. J. Phys. Oceanogr., 39 , 675690.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1992: Fluid exchange across a meandering jet. J. Phys. Oceanogr., 22 , 431440.

  • Samelson, R. M., and S. Wiggins, 2006: Lagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach. Springer-Verlag, 147 pp.

    • Search Google Scholar
    • Export Citation
  • Shadden, S. C., F. Lekien, and J. E. Marsden, 2005: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D, 212 , 271304.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional ocean modeling system: A split-explicit, free-surface, topography following coordinates ocean model. Ocean Modell., 9 , 347404.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., J. N. Koshyk, and K. Ngan, 2000: On the nature of large-scale mixing in the stratosphere and mesosphere. J. Geophys. Res., 105 , 1243312446.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and R. Ferrari, 2009: The production and dissipation of compensated thermocline variance by mesoscale stirring. J. Phys. Oceanogr., 39 , 24772501.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277 , 19561962.

    • Search Google Scholar
    • Export Citation
  • Sommeria, J., S. D. Meyers, and H. L. Swinney, 1989: Laboratory model of a planetary eastward jet. Nature, 337 , 5861.

  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 300 pp.

  • Wiggins, S., 2005: The dynamical systems approach to Lagrangian transport in oceanic flows. Annu. Rev. Fluid Mech., 37 , 295328.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 160 79 10
PDF Downloads 125 51 7

Chaotic Advection in an Archipelago

View More View Less
  • 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 Stevens Institute of Technology, Hoboken, New Jersey
  • | 3 Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey
  • | 4 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
Restricted access

Abstract

Techniques from dynamical systems theory have been applied to study horizontal stirring of fluid in the Philippine Archipelago. The authors’ analysis is based on velocity fields produced by two high-resolution (3 and 6 km) numerical models. Particular attention is paid to identifying robust surface flow patterns and associating them with dominant Lagrangian coherent structures (LCSs). A recurrent wind-driven dipole in the lee of the coastline is considered in detail. The associated LCSs form a template for stirring, exchange, and biological transport in and around the dipole. Chaotic advection is argued to provide a relevant framework for interpreting mesoscale horizontal stirring processes in an archipelago as a whole. Implications for the formation of filaments, the production of tracer variance, and the scale at which stirring leads to mixing are discussed in connection with an observed temperature record.

Corresponding author address: Irina I. Rypina, Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: irypina@whoi.edu

Abstract

Techniques from dynamical systems theory have been applied to study horizontal stirring of fluid in the Philippine Archipelago. The authors’ analysis is based on velocity fields produced by two high-resolution (3 and 6 km) numerical models. Particular attention is paid to identifying robust surface flow patterns and associating them with dominant Lagrangian coherent structures (LCSs). A recurrent wind-driven dipole in the lee of the coastline is considered in detail. The associated LCSs form a template for stirring, exchange, and biological transport in and around the dipole. Chaotic advection is argued to provide a relevant framework for interpreting mesoscale horizontal stirring processes in an archipelago as a whole. Implications for the formation of filaments, the production of tracer variance, and the scale at which stirring leads to mixing are discussed in connection with an observed temperature record.

Corresponding author address: Irina I. Rypina, Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: irypina@whoi.edu

Save