• Banner, M. L., 1990: Equilibrium spectra of wind waves. J. Phys. Oceanogr., 20 , 966984.

  • Banner, M. L., and O. M. Phillips, 1974: On the incipient breaking of small scale waves. J. Fluid Mech., 65 , 647656.

  • Banner, M. L., and W. K. Melville, 1976: On the separation of air flow over water waves. J. Fluid Mech., 77 , 825842.

  • Banner, M. L., and D. H. Peregrine, 1993: Wave breaking in deep water. Annu. Rev. Fluid Mech., 25 , 373397.

  • Banner, M. L., A. V. Babanin, and I. R. Young, 2000: Breaking probability for dominant waves on the sea surface. J. Phys. Oceanogr., 30 , 31453160.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., J. R. Gemmrich, and D. M. Farmer, 2002: Multiscale measurements of ocean wave breaking probability. J. Phys. Oceanogr., 32 , 33643375.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28 , 181189.

    • Search Google Scholar
    • Export Citation
  • Carlsson, B., A. Rutgersson, and A-S. Smedman, 2009a: Impact of swell on simulations using a regional atmospheric climate model. Tellus, 61A , 527538.

    • Search Google Scholar
    • Export Citation
  • Carlsson, B., A. Rutgersson, and A-S. Smedman, 2009b: Investigating the effect of a wave-dependent momentum flux in a process oriented ocean model. Boreal Environ. Res., 14 , 317.

    • Search Google Scholar
    • Export Citation
  • Cartwright, D. E., and M. S. Longuet-Higgins, 1956: The statistical distribution of the maximum of a random wave function. Proc. Roy. Soc. London, 237 , 212232.

    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81 , 639640.

  • Chen, G., and S. E. Belcher, 2000: Effects of long waves on wind-generated waves. J. Phys. Oceanogr., 30 , 22462256.

  • Donelan, M. A., 1987: The effect of swell on the growth of wind waves. Johns Hopkins APL Tech. Dig., 8 , 1823.

  • Donelan, M. A., 1990: Air–sea interaction. The Sea, B. LeMehaute and D. M. Hanes, Eds., Ocean Engineering Science, Vol. 9, Wiley and Sons, 239–292.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., and W. J. Pierson, 1987: Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92 , (C5). 49715029.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, A315 , 509562.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., F. W. Dobson, S. D. Smith, and R. J. Anderson, 1993: On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr., 23 , 21432149.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., W. M. Drennan, and A. K. Magnusson, 1996: Nonstationary analysis of the directional properties of propagating waves. J. Phys. Oceanogr., 26 , 19011914.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., H. C. Graber, D. Hauser, and C. Quentin, 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108 , 8062. doi:10.1029/2000JC000715.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and C. W. Fairall, 1998: Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets. J. Atmos. Sci., 55 , 23112328.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Glazman, R. E., 1986: Statistical characterization of sea surface geometry for a wave slope field discontinuous in the mean square. J. Geophys. Res., 91 , (C5). 66296641.

    • Search Google Scholar
    • Export Citation
  • Guo Larsén, X., A-S. Smedman, and U. Högström, 2004: Air–sea exchange of sensible heat over the Baltic Sea. Quart. J. Roy. Meteor. Soc., 130 , 519539.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, D. E., M. Dunckel, and J. A. Ewing, 1980: Directional wave spectra observed during JONSWAP. J. Phys. Oceanogr., 10 , 12641280.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z., A12 , 195.

    • Search Google Scholar
    • Export Citation
  • Haugen, D. A., J. C. Kaimal, and E. F. Bradley, 1971: An experimental study of Reynolds stress and heat flux in the atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 97 , 168180.

    • Search Google Scholar
    • Export Citation
  • Högström, U., 1990: Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J. Atmos. Sci., 47 , 19501972.

    • Search Google Scholar
    • Export Citation
  • Högström, U., 1996: Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteor., 78 , 215246.

  • Högström, U., and Coauthors, 2008: Momentum fluxes and wind gradients in the marine boundary layer: A multi-platform study. Boreal Environ. Res., 13 , 475502.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., S. R. Long, C-C. Tung, Y. Yuen, and L. F. Bliven, 1981: A unified two-parameter wave spectral model for a general sea state. J. Fluid Mech., 112 , 203224.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2005a: Drag coefficient, dynamic roughness and reference wind speed. J. Oceanogr., 61 , 399413.

  • Hwang, P. A., 2005b: Temporal and spatial variation of the drag coefficient of a developing sea under steady wind-forcing. J. Geophys. Res., 110 , C07024. doi:10.1029/2005JC002912.

    • Search Google Scholar
    • Export Citation
  • Johansson, C., 2003: Influence of external factors on the turbulence structures in the boundary layer. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 792, Acta Universitatis Upsaliensis, Akademitryck AB, 34 pp.

    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S. A., 1961: Application of the theory of similarity to the analysis of wind-generated wave motion as a stochastic process. Izv. Akad. Nauk SSSR, Ser. Geofiz., 1 , 105117. English translation, 1, 73–80.

    • Search Google Scholar
    • Export Citation
  • Klotz, S. P., 1982: On the numerical computation of laminar and turbulent boundary layers at gas-liquid interface. Ph.D. thesis, Stanford University, 206 pp.

  • Komen, G. J., 1987: Energy and momentum fluxes through the sea surface. Proc. Fourth ‘Aha Huliko’a Winter Workshop on Dynamics of the Ocean Surface Mixed Layer, Honolulu, HI, University of Hawaii at Manoa, 207–217.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselman, S. Hasselman, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., 1997: Thermodynamics of the ocean—physical model of the spectrum of capillary–gravity waves. Phys. Oceanogr., 8 , 6980.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11 , 324336.

  • Liu, H-T., and J-T. Lin, 1982: On the spectra of high-frequency wind waves. J. Fluid Mech., 123 , 165185.

  • Longuet-Higgins, M. S., 1969: On wave breaking and equilibrium spectrum of wind. Proc. Roy. Soc. London, A310 , 151159.

  • Maat, N., C. Kraan, and W. A. Oost, 1991: The roughness of wind waves. Bound.-Layer Meteor., 54 , 89103.

  • Massel, S. R., 1996: Ocean Surface Waves: Their Physics and Prediction. World Scientific Publishing, 491 pp.

  • Melville, W. K., 1977: Wind stress and roughness length over breaking waves. J. Phys. Oceanogr., 7 , 702710.

  • Ochi, M. K., 1998: Ocean Waves: The Stochastic Approach. Cambridge University Press, 320 pp.

  • Ochi, M. K., and C-H. Tsai, 1983: Prediction of occurrence of breaking waves in deep water. J. Phys. Oceanogr., 13 , 20082019.

  • Papadimitrakis, Y. A., 1986: On the structure of artificially generated water wave trains. J. Geophys. Res., 91 , (C12). 1423714249.

  • Papadimitrakis, Y. A., 2005: On the probability of wave breaking in deep waters. Deep-Sea Res., 52 , 12461269.

  • Papadimitrakis, Y. A., and A. I. Papaioannou, 2003: Sea surface roughness parameterization. Wind over Waves II: Forecasting and Fundamentals of Application, S. G. Sajjadi and J. Hunt, Eds., Horwood Publishing, 57–72.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9 , 857861.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1958: The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech., 4 , 785790.

  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean. 2nd ed. Cambridge University Press, 336 pp.

  • Phillips, O. M., 1981: The dispersion of short wavelets in the presence of a dominant wave. J. Fluid Mech., 107 , 465485.

  • Phillips, O. M., and M. L. Banner, 1974: Wave breaking in the presence of wind drift and swell. J. Fluid Mech., 66 , 625640.

  • Pierson, W. J., 1964: The interpretation of wave spectrums in terms of the wind profile instead of the wind measured at a constant height. J. Geophys. Res., 69 , 51915203.

    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., and L. Moskowitz, 1964: A proposed spectral form for fully developed seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69 , 51585190.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 1986: A two-scale model of short wind-generated waves and scatterometry. J. Geophys. Res., 91 , 1073510749.

  • Plant, W. J., 2002: A stochastic, multiscale model of microwave backscatter from ocean. J. Geophys. Res., 107 , 3120. doi:10.1029/2001JC000909.

    • Search Google Scholar
    • Export Citation
  • Rutgersson, A., A-S. Smedman, and U. Högström, 2001: Use of conventional stability parameters during swell. J. Geophys. Res., 106 , (C11). 2711727134.

    • Search Google Scholar
    • Export Citation
  • She, K., C. A. Greated, and W. J. Easson, 1997: Experimental study of three-dimensional breaking wave kinematics. Appl. Ocean Res., 19 , 329343.

    • Search Google Scholar
    • Export Citation
  • Smedman, A-S., M. Tjernström, and U. Högström, 1994: The near-neutral marine atmospheric boundary layer with no surface shearing stress: A case study. J. Atmos. Sci., 51 , 33993411.

    • Search Google Scholar
    • Export Citation
  • Smedman, A-S., U. Högström, H. Bergström, A. Rutgersson, K. K. Kahma, and H. Pettersson, 1999: A case study of air–sea interaction during swell conditions. J. Geophys. Res., 104 , (C11). 2583325851.

    • Search Google Scholar
    • Export Citation
  • Smedman, A-S., X. Guo Larsén, U. Högström, K. K. Kahma, and H. Pettersson, 2003: Effect of sea state on the momentum exchange over the sea during neutral conditions. J. Geophys. Res., 108 , 3367. doi:10.1029/2002JC001526.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., and Coauthors, 1992: Sea surface wind stress and drag coefficients: The HEXOS results. Bound.-Layer Meteor., 60 , 109142.

    • Search Google Scholar
    • Export Citation
  • Stansell, P., and C. MacFarlane, 2002: Experimental investigation of wave breaking criteria based on wave phase speeds. J. Phys. Oceanogr., 32 , 12691283.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. W., 1974: The air–sea momentum exchange. Bound.-Layer Meteor., 6 , 151167.

  • Toba, Y., 1973: Local balance in the air–sea boundary process III. J. Oceanogr. Soc. Japan, 29 , 209225.

  • Tulin, M. P., and J. Li, 1992: On the breaking of energetic waves. Int. J. Offshore Polar Eng., 2 , 4653.

  • van Vledder, G. Ph, and L. H. Holthuijsen, 1993: The directional response of ocean waves to turning winds. J. Phys. Oceanogr., 23 , 177192.

    • Search Google Scholar
    • Export Citation
  • Wu, C. H., and H. M. Nepf, 2002: Breaking criteria and energy losses for three-dimensional wave breaking. J. Geophys. Res., 107 , (C10). 117.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1982: Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res., 87 , 97049706.

  • Wu, J., 1986: Roughness elements of the sea surface—their spectral composition. Tellus, 38A , 178188.

  • Young, I. R., 1999: Wind Generated Ocean Waves. Elsevier, 288 pp.

  • Yuan, Y. L., 1982: On the statistical properties of sea waves. Ph.D. thesis, North Carolina State University, 80 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 93 1
PDF Downloads 143 86 0

Evaluation of a Roughness Length Model and Sea Surface Properties with Data from the Baltic Sea

View More View Less
  • 1 Department of Earth Sciences, Uppsala University, Uppsala, Sweden
  • | 2 Water Resources and Environmental Engineering Division, School of Civil Engineering, National Technical University of Athens, Athens, Greece
  • | 3 Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Restricted access

Abstract

The exchange of momentum between the oceans and atmosphere is important for many atmospheric and oceanic processes and is mainly governed by the roughness of sea surface. The roughness can be expressed by a roughness length z0. A roughness length model, based on the concept that z0 is determined by stochastic wave breaking, is presented. The model performance is evaluated using measurements from the Östergarnsholm site, in the Baltic Sea, and pertinent information from other recent investigations. The wave field and the roughness length variations are investigated during various sea state conditions dominated by wind-driven waves. It is found that several parameters, describing the characteristics of the wave field, are dependent on the amount of energy that long waves have relative to the energy of short, wind-driven waves of the sea spectrum (called the swell ratio). The impact of swell ratio on z0 can explain the discrepancies found in various results among relevant investigations. The roughness length model can well reproduce the observed roughness length.

Corresponding author address: Björn Carlsson, Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden. Email: bjorn.carlsson@met.uu.se

Abstract

The exchange of momentum between the oceans and atmosphere is important for many atmospheric and oceanic processes and is mainly governed by the roughness of sea surface. The roughness can be expressed by a roughness length z0. A roughness length model, based on the concept that z0 is determined by stochastic wave breaking, is presented. The model performance is evaluated using measurements from the Östergarnsholm site, in the Baltic Sea, and pertinent information from other recent investigations. The wave field and the roughness length variations are investigated during various sea state conditions dominated by wind-driven waves. It is found that several parameters, describing the characteristics of the wave field, are dependent on the amount of energy that long waves have relative to the energy of short, wind-driven waves of the sea spectrum (called the swell ratio). The impact of swell ratio on z0 can explain the discrepancies found in various results among relevant investigations. The roughness length model can well reproduce the observed roughness length.

Corresponding author address: Björn Carlsson, Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden. Email: bjorn.carlsson@met.uu.se

Save