• Baturin, N. G., and P. P. Niiler, 1997: Effects of instability waves in the mixed layer of the equatorial Pacific. J. Geophys. Res., 102 , 2777127793.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., R. E. Davis, and C. B. Fandry, 1976: A technique for objective analysis and design of oceanographic measurements applied to MODE-73. Deep-Sea Res., 23 , 559582.

    • Search Google Scholar
    • Export Citation
  • Brown, J. N., J. S. Godfrey, and R. Fiedler, 2007a: A zonal momentum balance on density layers for the central and eastern equatorial Pacific. J. Phys. Oceanogr., 37 , 19391955.

    • Search Google Scholar
    • Export Citation
  • Brown, J. N., J. S. Godfrey, and A. Schiller, 2007b: A discussion of flow pathways in the central and eastern equatorial Pacific. J. Phys. Oceanogr., 37 , 13211339.

    • Search Google Scholar
    • Export Citation
  • Bryden, H., and E. C. Brady, 1989: Eddy momentum and heat fluxes and their effects on the circulation of the equatorial Pacific Ocean. J. Mar. Res., 47 , 5579.

    • Search Google Scholar
    • Export Citation
  • Contreras, R. F., 2002: Long-term observations of tropical instability waves. J. Phys. Oceanogr., 32 , 27152722.

  • Cronin, M. F., and W. S. Kessler, 2009: Near-surface shear flow in the tropical Pacific cold tongue front. J. Phys. Oceanogr., 39 , 12001215.

    • Search Google Scholar
    • Export Citation
  • Deser, C. S., and J. M. Wallace, 1990: Large-scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. J. Climate, 3 , 12541281.

    • Search Google Scholar
    • Export Citation
  • Dutrieux, P., C. E. Menkes, J. Vialard, P. Flament, and B. Blanke, 2008: Lagrangian study of tropical instability vortices in the Atlantic. J. Phys. Oceanogr., 38 , 400417.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1982: The Jackknife, the Bootstrap, and Other Resampling Plans. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 38, SIAM, 92 pp.

    • Search Google Scholar
    • Export Citation
  • Flament, P., S. C. Kennan, R. A. Knox, P. P. Niiler, and R. L. Bernstein, 1996: The three-dimensional structure of an upper ocean vortex in the tropical Pacific Ocean. Nature, 383 , 610613.

    • Search Google Scholar
    • Export Citation
  • Garrett, C. J. R., and J. W. Loder, 1981: Dynamical aspects of shallow sea fronts. Philos. Trans. Roy. Soc. London, 302A , 563581.

  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2003: A technical guide to MOM4. NOAA/GFDL Ocean Group Tech. Rep. 5, 295 pp.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28 , 634658.

    • Search Google Scholar
    • Export Citation
  • Hansen, D. V., and C. A. Paul, 1984: Genesis and effects of long waves in the equatorial Pacific. J. Geophys. Res., 89 , 1043110440.

  • Hazeleger, W., P. de Vries, and G. J. van Oldenborgh, 2001: Do tropical cells ventilate the Indo-Pacific equatorial thermocline? Geophys. Res. Lett., 28 , 17631766.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., 2005: The equatorial undercurrent, meridional overturning circulation, and their roles in mass and heat exchanges during El Niño events in the tropical Pacific Ocean. Ocean Dyn., 55 , 110123.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., and R. Murtugudde, 2006: Temperature advection by tropical instability waves. J. Phys. Oceanogr., 36 , 592605.

  • Jochum, M., M. F. Cronin, W. S. Kessler, and D. Shea, 2007: Observed horizontal temperature advection by tropical instability waves. Geophys. Res. Lett., 34 , L09604. doi:10.1029/2007GL029416.

    • Search Google Scholar
    • Export Citation
  • Johnson, E. S., 1996: A convergent instability wave front in the central tropical Pacific. Deep-Sea Res. II, 43 , 753778.

  • Johnson, E. S., and P. E. Plimpton, 1999: TOGA/TAO shipboard ADCP data report, 1991–1995. NOAA Data Rep. ERL PMEL-67, 23 pp.

  • Johnson, G. C., 2001: The Pacific Ocean subtropical cell surface limb. Geophys. Res. Lett., 28 , 17711774.

  • Johnson, G. C., M. J. McPhaden, and E. Firing, 2001: Equatorial Pacific Ocean horizontal velocity, divergence, and upwelling. J. Phys. Oceanogr., 31 , 839849.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., B. M. Sloyan, W. S. Kessler, and K. E. McTaggart, 2002: Direct measurements of upper ocean currents and water properties across the tropical Pacific Ocean during the 1990s. Prog. Oceanogr., 52 , 3161.

    • Search Google Scholar
    • Export Citation
  • Kennan, S. C., and P. J. Flament, 2000: Observations of a tropical instability vortex. J. Phys. Oceanogr., 30 , 22772301.

  • Kessler, W. S., L. M. Rothstein, and D. Chen, 1998: The annual cycle of SST in the eastern tropical Pacific, diagnosed in an ocean GCM. J. Climate, 11 , 777799.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 808816.

    • Search Google Scholar
    • Export Citation
  • Legeckis, R., 1977: Long waves in the equatorial Pacific Ocean: A view from a geostationary satellite. Science, 197 , 11791181.

  • Lu, P., J. P. McCreary, and B. A. Klinger, 1998: Meridional circulation cells and the source waters of the Pacific equatorial undercurrent. J. Phys. Oceanogr., 28 , 6284.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., G. C. Johnson, and W. S. Kessler, 2007: Distinct 17- and 33-day tropical instability waves in subsurface observations. J. Phys. Oceanogr., 37 , 855872.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1981: A linear stratified ocean model of the equatorial undercurrent. Philos. Trans. Roy. Soc. London, 298A , 603635.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24 , 466497.

    • Search Google Scholar
    • Export Citation
  • Menkes, C. E., and Coauthors, 2002: A whirling ecosystem in the equatorial Atlantic. Geophys. Res. Lett., 29 , 1553. doi:10.1029/2001GL014576.

    • Search Google Scholar
    • Export Citation
  • Menkes, C. E., J. G. Vialard, S. C. Kennan, J-P. Boulanger, and G. V. Madec, 2006: A modeling study of the impact of tropical instability waves on the heat budget of the eastern equatorial Pacific. J. Phys. Oceanogr., 36 , 847865.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. P., and J. M. Wallace, 1992: The annual cycle in equatorial convection and sea surface temperature. J. Climate, 5 , 11401156.

    • Search Google Scholar
    • Export Citation
  • Perez, R. C., and W. S. Kessler, 2009: The three-dimensional structure of tropical cells in the central equatorial Pacific Ocean. J. Phys. Oceanogr., 39 , 2749.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., W. J. Hurlin, and R. C. Pacanowski, 1986: Properties of long equatorial waves in models of the seasonal cycle in the tropical Atlantic and Pacific oceans. J. Geophys. Res., 91 , 1420714211.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., W. J. Hurlin, and A. D. Seigel, 1987: Simulation of the seasonal cycle of the tropical Pacific Ocean. J. Phys. Oceanogr., 17 , 19862002.

    • Search Google Scholar
    • Export Citation
  • Qiao, L., and R. H. Weisberg, 1995: Tropical instability wave kinematics: Observations from the Tropical Instability Wave Experiment. J. Geophys. Res., 100 , 86778693.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20 , 54735496.

    • Search Google Scholar
    • Export Citation
  • Richards, K., S-P. Xie, and T. Miyama, 2009: Vertical mixing in the ocean and its impact on the coupled ocean–atmosphere system in the eastern tropical Pacific. J. Climate, 22 , 37033719.

    • Search Google Scholar
    • Export Citation
  • Risien, C. M., and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38 , 23792413.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., M. Kawase, and S. C. Riser, 2002: Idealized models of slantwise convection in a baroclinic flow. J. Phys. Oceanogr., 32 , 558572.

    • Search Google Scholar
    • Export Citation
  • Swenson, M. S., and D. V. Hansen, 1999: Tropical Pacific Ocean mixed layer heat budget: The Pacific cold tongue. J. Phys. Oceanogr., 29 , 6981.

    • Search Google Scholar
    • Export Citation
  • Thomas, L., and R. Ferrari, 2008: Friction, frontogenesis, and the stratification of the surface mixed layer. J. Phys. Oceanogr., 38 , 25012518.

    • Search Google Scholar
    • Export Citation
  • Thompson, L., 2000: Ekman layers and two-dimensional frontogenesis in the upper ocean. J. Geophys. Res., 105 , 64376451.

  • Wallace, J. M., T. P. Mitchell, and C. S. Deser, 1989: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2 , 14921499.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and M. J. McPhaden, 1999: The surface-layer heat balance in the equatorial Pacific Ocean. Part I: The mean seasonal cycle. J. Phys. Oceanogr., 29 , 18121831.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and M. J. McPhaden, 2000: The surface-layer heat balance in the equatorial Pacific Ocean. Part II: Interannual variability. J. Phys. Oceanogr., 30 , 29893008.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and L. Qiao, 2000: Equatorial upwelling in the central Pacific estimated from moored velocity profilers. J. Phys. Oceanogr., 30 , 105124.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1981: An estimate of equatorial upwelling in the Pacific. J. Phys. Oceanogr., 11 , 12051214.

  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88 , 527539.

    • Search Google Scholar
    • Export Citation
  • Yu, L., R. A. Weller, and B. Sun, 2004: Improving latent and sensible heat flux estimates for the Atlantic Ocean (1988–99) by a synthesis approach. J. Climate, 17 , 373393.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109 , D19105. doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 94 46 1
PDF Downloads 59 23 0

Tropical Cells and a Secondary Circulation near the Northern Front of the Equatorial Pacific Cold Tongue

View More View Less
  • 1 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and National Oceanic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
  • | 2 National Oceanic and Atmospheric Administration/Pacific Marine Environmental Laboratory, Seattle, Washington
Restricted access

Abstract

Shipboard measurements and a model are used to describe the mean structure of meridional–vertical tropical cells (TCs) in the central equatorial Pacific and a secondary circulation associated with the northern front of the cold tongue. The shape of the front is convoluted by the passage of tropical instability waves (TIWs). When velocities are averaged in a coordinate system centered on the instantaneous position of the northern front, the measurements show a near-surface minimum in northward flow north of the surface front (convergent flow near the front). This convergence and inferred downwelling extend below the surface mixed layer, tilt poleward with depth, and are meridionally bounded by regions of divergence and upwelling. Similarly, the model shows that, on average, surface cold tongue water moves northward toward the frontal region and dives below tilted front, whereas subsurface water north of the front moves southward toward the front, upwells, and then moves northward in the surface mixed layer. The model is used to demonstrate that this mean quasi-adiabatic secondary circulation is not a frozen field that migrates with the front but is instead highly dependent on the phase of the TIWs: southward-upwelling flow on the warm side of the front tends to occur when the front is displaced southward, whereas northward-downwelling flow on the cold side of the front occurs when the front is displaced northward. Consequently, when averaged in geographic coordinates, the observed and simulated TCs appear to be equatorially asymmetric and show little trace of a secondary circulation near the mean front.

Corresponding author address: Renellys C. Perez, Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: renellys.c.perez@noaa.gov

Abstract

Shipboard measurements and a model are used to describe the mean structure of meridional–vertical tropical cells (TCs) in the central equatorial Pacific and a secondary circulation associated with the northern front of the cold tongue. The shape of the front is convoluted by the passage of tropical instability waves (TIWs). When velocities are averaged in a coordinate system centered on the instantaneous position of the northern front, the measurements show a near-surface minimum in northward flow north of the surface front (convergent flow near the front). This convergence and inferred downwelling extend below the surface mixed layer, tilt poleward with depth, and are meridionally bounded by regions of divergence and upwelling. Similarly, the model shows that, on average, surface cold tongue water moves northward toward the frontal region and dives below tilted front, whereas subsurface water north of the front moves southward toward the front, upwells, and then moves northward in the surface mixed layer. The model is used to demonstrate that this mean quasi-adiabatic secondary circulation is not a frozen field that migrates with the front but is instead highly dependent on the phase of the TIWs: southward-upwelling flow on the warm side of the front tends to occur when the front is displaced southward, whereas northward-downwelling flow on the cold side of the front occurs when the front is displaced northward. Consequently, when averaged in geographic coordinates, the observed and simulated TCs appear to be equatorially asymmetric and show little trace of a secondary circulation near the mean front.

Corresponding author address: Renellys C. Perez, Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: renellys.c.perez@noaa.gov

Save