• Abrahams, M. V., and P. W. Colgan, 1985: Risk of predation, hydrodynamic efficiency and their influence on school structure. Environ. Biol. Fishes, 13 , 195202.

    • Search Google Scholar
    • Export Citation
  • Baird, R. C., and G. Y. Jumper, 1995: Encounter models and deep-sea fishes: Numerical simulations and the mate location problem in Sternoptyx diaphana (Pisces, Sternoptychidae). Deep-Sea Res. I, 42 , 675696.

    • Search Google Scholar
    • Export Citation
  • Barrange, M., D. G. M. Miller, I. Hampton, and T. T. Dunne, 1993: Internal structure of Antarctic krill Euphausia superba swarms based on acoustic observations. Mar. Ecol. Prog. Ser., 99 , 205213.

    • Search Google Scholar
    • Export Citation
  • Beveridge, I. A., 2007: Acoustic observations of zooplankton distribution in Saanich Inlet, an intermittently anoxic fjord. M.S. thesis, Dept. of Biology, University of Victoria, 147 pp.

  • Boden, B. P., and E. M. Kampa, 1965: An aspect of euphausiid ecology revealed by echo-sounding in a fjord. Crustaceana, 9 , 155173.

  • Boyd, P. W., P. J. Harrison, and B. D. Johnson, 1999: The Joint Global Ocean Flux Study (Canada) in the NE subarctic Pacific. Deep-Sea Res. II, 46 , 23452350.

    • Search Google Scholar
    • Export Citation
  • Brainerd, K., and M. C. Gregg, 1993: Diurnal restratification and turbulence in the oceanic surface mixed layer. I: Observations. J. Geophys. Res., 98 , 2264522656.

    • Search Google Scholar
    • Export Citation
  • Catton, K. B., D. R. Webster, and J. Yen, 2008: Can krill mix the ocean? Preprints, Ocean Sciences Meeting, Orlando, FL, ASLO, 209.

  • Clay, C. S., and H. Medwin, 1977: Acoustic Oceanography: Principles and Applications. John Wiley and Sons, 544 pp.

  • De Robertis, A., 2002: Small-scale spatial distribution of the euphausiid Euphausia pacifica and overlap with planktivorous fishes. J. Plankton Res., 24 , 12071220.

    • Search Google Scholar
    • Export Citation
  • De Robertis, A., C. Schell, and J. S. Jaffe, 2003: Acoustic observations of the swimming behavior of the euphausiid Euphausia pacifica. J. Mar. Sci., 60 , 885898.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., R. J. Bingham, R. L. Iverson, D. P. Nowacek, L. C. St. Laurent, and P. H. Wiebe, 2006: Does the marine biosphere mix the ocean? J. Mar. Res., 64 , 541561.

    • Search Google Scholar
    • Export Citation
  • Dewey, R. K., W. R. Crawford, A. E. Gargett, and N. S. Oakey, 1987: A microstructure instrument for profiling oceanic turbulence in coastal bottom boundary layers. J. Atmos. Oceanic Technol., 4 , 288297.

    • Search Google Scholar
    • Export Citation
  • DFO, cited. 2009: Fisheries and oceans Canada—Line P program. History of oceanographic sampling at Ocean Weather Station PAPA and Line P. [Available online at http://www.pac.dfo-mpo.gc.ca/science/oceans/data-donnees/line-p/index-eng.htm].

    • Search Google Scholar
    • Export Citation
  • Efron, B., and G. Gong, 1983: A leisurely look at the bootstrap, the jackknife and cross-validation. Amer. Stat., 37 , 3648.

  • Egbert, G. D., and R. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106 , 2247522502.

    • Search Google Scholar
    • Export Citation
  • Enders, E. C., D. Boisclair, and A. G. Roy, 2003: The effect of turbulence on the cost of swimming for juvenile Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci., 60 , 11491160.

    • Search Google Scholar
    • Export Citation
  • Farmer, D. D., G. B. Crawford, and T. R. Osborn, 1987: Temperature and velocity microstructure caused by swimming fish. Limnol. Oceanogr., 32 , 978983.

    • Search Google Scholar
    • Export Citation
  • Forward, R. B., 1988: Diel vertical migration: Zooplankton photobiology and behavior. Oceanogr. Mar. Biol. Ann. Rev., 26 , 361393.

  • Forward, R. B., and D. Rittschoft, 2000: Alteration of photo-responses involved in diel vertical migration of a crab larva by fish mucus and degradation products of mucopolysaccharides. J. Exp. Mar. Biol. Ecol., 245 , 277292.

    • Search Google Scholar
    • Export Citation
  • Freeland, H., K. Denman, C. S. Wong, F. Whitney, and R. Jacques, 1997: Evidence of change in the winter mixed-layer in the northeast Pacific Ocean. Deep-Sea Res. I, 44 , 21172129.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., T. R. Osborn, and P. W. Nasmyth, 1984: Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech., 144 , 231280.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., D. Stucchi, and F. Whitney, 2003: Physical processes associated with high primary production in Saanich Inlet, British Columbia. Estuarine Coastal Shelf Sci., 56 , 11411156.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1979: Mixing in the ocean interior. Dyn. Atmos. Oceans, 3 , 239265.

  • Goldblatt, R. H., D. L. Mackas, and A. G. Lewis, 1999: Mesozooplankton community characteristics in the NE subarctic Pacific. Deep-Sea Res. II, 46 , 26192644.

    • Search Google Scholar
    • Export Citation
  • Greenlaw, C. F., 1979: Acoustical estimation of zooplankton populations. Limnol. Oceanogr., 24 , 226242.

  • Gregg, M. C., 1987: Diapycnal mixing in the thermocline. J. Geophys. Res., 92 , 52495286.

  • Gregg, M. C., and T. B. Sanford, 1988: The dependence of turbulent dissipation on stratification in a diffusively stable thermocline. J. Geophys. Res., 93 , 1238112392.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and J. K. Horne, 2009: Turbulence, acoustic backscatter and pelagic nekton in Monterey Bay. J. Phys. Oceanogr., 39 , 10971114.

    • Search Google Scholar
    • Export Citation
  • Grundle, D. S., D. A. Timothy, and D. E. Varela, 2009: Variations of phytoplankton productivity and biomass over an annual cycle in Saanich Inlet, a British Columbia fjord. Cont. Shelf Res., 29 , 22572269.

    • Search Google Scholar
    • Export Citation
  • Gurvich, A. S., and A. M. Yaglom, 1967: Breakdown of eddies and probability distributions for small-scale turbulence. Phys. Fluids, 10 , S59S65.

    • Search Google Scholar
    • Export Citation
  • Hamner, W. M., P. P. Hamner, S. W. Strand, and R. W. Gilmer, 1983: Behavior of Antarctic krill Euphausia superba: Chemoreception, feeding, schooling and molting. Science, 220 , 433435.

    • Search Google Scholar
    • Export Citation
  • Hosegood, P. J., M. C. Gregg, and M. H. Alford, 2008: Restratification of the surface mixed layer with submesoscale lateral density gradients: Diagnosing the importance of the horizontal dimension. J. Phys. Oceanogr., 38 , 24382460.

    • Search Google Scholar
    • Export Citation
  • Huntley, M. E., and M. Zhou, 2004: Influence of animals on turbulence in the sea. Mar. Ecol., 273 , 6579.

  • Itsweire, E. C., K. N. Helland, and C. W. van Atta, 1986: The evolution of grid-generated turbulence in a stably-stratified fluid. J. Fluid Mech., 162 , 299338.

    • Search Google Scholar
    • Export Citation
  • Jaffe, J. S., M. D. Ohman, and A. De Robertis, 1999: Sonar estimates of daytime activity levels of Euphausia pacifica in Saanich Inlet. Can. J. Fish. Aquat. Sci., 56 , 20002010.

    • Search Google Scholar
    • Export Citation
  • Jensen, K. H., P. J. Jakobsen, and O. T. Kleiven, 1998: Fish kairomone regulation of internal swarm structure in Daphnia pulex (Caldocera: Crustacea). Hydrobiologia, 368 , 123127.

    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., and D. L. Rudnick, 2009: Observations of the transition layer. J. Phys. Oceanogr., 39 , 780797.

  • Katija, K., and J. O. Dabiri, 2009: A viscosity-enhanced mechanism for biogenic ocean mixing. Nature, 460 , 624626.

  • Klein, P., and G. Lapeyre, 2009: The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci., 1 , 351375. doi:10.1146/annurev.marine.010908.163704.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., J. F. Dower, I. Beveridge, R. Dewey, and K. P. Bartlett, 2006: Observations of biologically-generated turbulence in a coastal inlet. Science, 313 , 17671770.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., J. F. Dower, R. Dewey, and E. A. D’Asaro, 2007: Mixing it up with krill. Science, 318 , 1239.

  • Kunze, E., K. J. Morrice, C. MacKay, K. Bartlett, E. E. McPhee-Shaw, J. B. Girton, and S. R. Brody, 2010: Stratified turbulent bottom boundary layers in canyons. Extended Abstracts, Ocean Sciences Meeting, Portland, OR, Amer. Geophys. Union, 37.

    • Search Google Scholar
    • Export Citation
  • Lavery, A. C., P. H. Wiebe, T. K. Stanton, G. L. Lawson, M. C. Benfield, and N. Copley, 2007: Determining dominant scatterers of sound in mixed zooplankton populations. J. Acoust. Soc. Amer., 122 , 33043326.

    • Search Google Scholar
    • Export Citation
  • Lawson, G. L., P. H. Wiebe, T. K. Stanton, and C. J. Ashijan, 2008: Euphausiid distribution along the western Antarctic Peninsula—Part A: Development of robust multi-frequency acoustic techniques to identify euphausiid aggregations and quantify euphausiid size, abundance and biomass. Deep-Sea Res. II, 55 , 412431.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364 , 701703.

    • Search Google Scholar
    • Export Citation
  • Lorke, A., and W. N. Probst, 2010: In situ measurements of turbulence in fish shoals. Limnol. Oceanogr., 55 , 354364.

  • Mackas, D. L., and A. Tsuda, 1999: Mesozooplankton in the eastern and western subarctic Pacific: Community structure, seasonal life histories and interannual variability. Prog. Oceanogr., 43 , 335363.

    • Search Google Scholar
    • Export Citation
  • Mackas, D. L., H. Sefton, C. B. Miller, and A. Raich, 1993: Vertical habitat partitioning by large calenoid copepods in the oceanic subarctic Pacific during spring. Prog. Oceanogr., 32 , 256294.

    • Search Google Scholar
    • Export Citation
  • Mackie, G. O., and C. E. Mills, 1983: Use of the Pisces IV submersible for zooplankton studies in coastal waters of British Columbia. Can. J. Fish. Aquat. Sci., 40 , 763776.

    • Search Google Scholar
    • Export Citation
  • MacLennan, D. N., and E. J. Simmonds, 1992: Fisheries Acoustics. Chapman and Hall, 325 pp.

  • Mahatavan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at oceanic fronts. Ocean Modell., 14 , 241256.

    • Search Google Scholar
    • Export Citation
  • Marlowe, C. J., and C. B. Miller, 1975: Patterns of vertical distribution and migration of zooplankton at Ocean Station “P”. Limnol. Oceanogr., 20 , 824844.

    • Search Google Scholar
    • Export Citation
  • McGillicuddy Jr., D. J., and A. R. Robinson, 1997: Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Res. I, 44 , 14271450.

    • Search Google Scholar
    • Export Citation
  • McGillicuddy Jr., D. J., and Coauthors, 1998: Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394 , 263266.

    • Search Google Scholar
    • Export Citation
  • McGillicuddy Jr., D. J., R. Johnson, D. A. Siegel, A. F. Michaels, N. R. Bates, and A. H. Knap, 1999: Mesoscale variations of biogeochemical properties in the Sargasso Sea. J. Geophys. Res., 104 , 1338113394.

    • Search Google Scholar
    • Export Citation
  • Miller, C. B., B. W. Frost, H. P. Batchelder, M. J. Clemons, and R. E. Conway, 1984: Life histories of large, grazing copepods in a subarctic ocean gyre: Neocalanus plumchrus, Neocalanus cristatus, and Eucalanus bungii in the Northeast Pacific. Prog. Oceanogr., 13 , 201243.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and T. R. Osborn, 1986: Mixing in the main thermocline. J. Phys. Oceanogr., 16 , 12501259.

  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res., 13 , 707730.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45 , 19772010.

  • Nasmyth, P., 1970: Oceanic turbulence. Ph.D. Thesis, University of British Columbia, 69 pp.

  • Nicol, S., 1986: Shape, size and density of daytime surface swarms of the euphausiid Meganyctiphanes norvegica in the Bay of Fundy. J. Plankton Res., 8 , 2939.

    • Search Google Scholar
    • Export Citation
  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12 , 256271.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10 , 8389.

  • Parsons, T. R., R. I. Perry, E. D. Nutborwn, W. Hsieh, and C. M. Lalli, 1983: Frontal zone analysis at the mouth of Saanich Inlet, British Columbia, Canada. Mar. Biol., 73 , 15.

    • Search Google Scholar
    • Export Citation
  • Pitchford, J. W., A. James, and J. Brindley, 2003: Optimal foraging in patchy turbulent environments. Mar. Ecol., 256 , 99110.

  • Ringelberg, J., 1995: Changes in light intensity and diel vertical migration—A comparison of marine and fresh-water environments. J. Mar. Biol. Assoc. U. K., 75 , 1525.

    • Search Google Scholar
    • Export Citation
  • Rippeth, T. P., J. C. Gascoigne, J. A. M. Green, M. E. Inall, M. R. Palmer, J. H. Simpson, and P. J. Wiles, 2007: Turbulent dissipation of coastal seas. Science. [Available online at http://www.scienceonline.org/cgi/eletters/313/5794/1768].

    • Search Google Scholar
    • Export Citation
  • Siegel, V., 2000: Krill (Euphausiacea) demography and variability in abundance and distribution. Can. J. Fish. Aquat. Sci., 57 , (S3). 151167.

    • Search Google Scholar
    • Export Citation
  • Simard, Y., and M. Sourisseau, 2009: Diel changes in acoustic and catch estimates of krill biomass. J. Mar. Sci., 66 , 13181325.

  • Sokal, R. R., and F. J. Rohlf, 1981: Biometry. 2nd ed. W.H. Freeman, 620 pp.

  • Sun, C-J., W. D. Smyth, and J. N. Moum, 1998: Dynamic instability of stratified shear flow in the upper equatorial Pacific. J. Geophys. Res., 103 , 1032310337.

    • Search Google Scholar
    • Export Citation
  • Tabata, S., and W. E. Weichselbaumer, 1992: An update of the statistics of hydrographic/CTD data taken at Ocean Station P (May 1956-September 1990). Institute of Ocean Sciences Canadian Data Rep. of Hydrography and Ocean Sciences 107, 75 pp.

    • Search Google Scholar
    • Export Citation
  • Takahashi, M., D. L. Seibert, and W. H. Thomas, 1977: Occasional blooms of phytoplankton during summer in Saanich Inlet, BC, Canada. Deep-Sea Res., 24 , 775780.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 300 pp.

  • Thiffeault, J-L., and S. Childress, 2010: Stirring by swimming bodies. Phys. Lett., 374A , 34873490. doi:10.1016/j.physleta.2010.06.043.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2005: The Turbulent Ocean. Cambridge University Press, 439 pp.

  • Timothy, D. A., and M. Y. S. Soon, 2001: Primary production and deep-water oxygen content of two British Columbian fjords. Mar. Chem., 73 , 3651.

    • Search Google Scholar
    • Export Citation
  • Torres, J. J., 1984: Relationship of oxygen consumption to swimming speed in Euphausia pacifica II: Drag, efficiency and a comparison with other swimming organisms. Mar. Biol., 78 , 231237.

    • Search Google Scholar
    • Export Citation
  • Trevorrow, M. V., 2005: The use of moored inverted echo sounders for monitoring mesozooplankton and fish near the ocean surface. Can. J. Fish. Aquat. Sci., 62 , 10041018.

    • Search Google Scholar
    • Export Citation
  • Trevorrow, M. V., D. L. Mackas, and M. C. Benfield, 2005: Comparison of multi-frequency acoustic and in situ measurements of zooplankton abundances in Knight Inlet, British Columbia. J. Acoust. Soc. Amer., 117 , 35473588.

    • Search Google Scholar
    • Export Citation
  • Ueno, H., E. Oka, T. Suga, H. Onishi, and D. Roemmich, 2007: Formation and variation of temperature inversions in the eastern subarctic North Pacific. Geophys. Res. Lett., 34 , L05603. doi:10.1029/2006GL028715.

    • Search Google Scholar
    • Export Citation
  • Weber, L. H., S. Z. El-Sayed, and I. Hampton, 1986: The variance spectra of phytoplankton, krill and water temperature in the Antarctic Ocean south of Africa. Deep-Sea Res., 33 , 13271343.

    • Search Google Scholar
    • Export Citation
  • Wiese, K., and Y. Ebina, 1995: Propulsion jet of Euphausia superba. J. Mar. Biol. Assoc. U. K., 75 , 4354.

  • Wunsch, C., and R. Ferrari, 2004: Vertical missing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36 , 281314.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, H., and R. Lueck, 1990: Why oceanic dissipation rates are not lognormal. J. Phys. Oceanogr., 20 , 19071918.

  • Yen, J., 2000: Life in transition: Balancing inertial and viscous forces by planktonic copepods. Biol. Bull., 198 , 213224.

  • Yen, J., J. Brown, and D. R. Webster, 2003: Analysis of the flow field of the krill Euphausia pacifica. Mar. Freshwater Behav. Physiol., 36 , 307319.

    • Search Google Scholar
    • Export Citation
  • Zhou, M., and R. D. Dorland, 2004: Aggregation and vertical migration behavior of Euphausia superba. Deep-Sea Res. II, 51 , 21192137.

  • Zhou, M., W. Nordhausen, and M. Huntley, 1994: ADCP measurements of the distribution and abundance of euphausiids near the Antarctic Peninsula in winter. Deep-Sea Res. I, 41 , 13251445.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 289 210 9
PDF Downloads 198 151 6

On Turbulence Production by Swimming Marine Organisms in the Open Ocean and Coastal Waters

View More View Less
  • 1 SEOS, University of Victoria, Victoria, British Columbia, Canada
Restricted access

Abstract

Microstructure and acoustic profile time series were collected near Ocean Station P in the eastern subarctic North Pacific and in Saanich Inlet at the south end of Vancouver Island, British Columbia, Canada, to examine production of turbulent dissipation by swimming marine organisms. At Ocean Station P, although a number of zooplankton species are large enough to generate turbulence with Reynolds numbers Re > 1000, biomass densities are typically less than 103 individuals per cubic meter (<0.01% by volume), and turbulent kinetic energy dissipation rates ε were better correlated with 16-m vertical shear than acoustic backscatter layers. In Saanich Inlet, where krill densities are up to 104 individuals per cubic meter (0.1% by volume), no dramatic elevation of dissipation rates ε was associated with dusk and dawn vertical migrations of the acoustic backscatter layer. Dissipation rates are a factor of 2 higher [〈ε〉 = 1.4 × 10−8 W kg−1, corresponding to buoyancy Re = 〈ε〉/(νN2) ∼ 140] in acoustic backscatter layers than in acoustically quiet waters, regardless of whether they are vertically migrating. The O(1 m) thick turbulence patches have vertical wavenumber spectra for microscale shear commensurate with the Nasmyth model turbulence spectrum. However, the turbulence bursts of O(10−5 W kg−1) proposed to occur in such dense swarms appear to be rare. Thus far, intense turbulent bursts have been found infrequently, even in very dense aggregations O(104 individuals per cubic meter) characteristic of coastal and high-latitude environs. Based on sampling to date, this corresponds to a frequency of occurrence of less than 4%, suggesting that turbulence production by the marine biosphere is not efficient.

* Current affiliation: Québec-Océan, Département de Biologie, Université Laval, Quebec City, Quebec, Canada

Corresponding author address: Eric Kunze, SEOS, University of Victoria, P.O. Box 3055, STN CSC, Victoria BC V8W 3P6, Canada. Email: kunze@uvic.ca

Abstract

Microstructure and acoustic profile time series were collected near Ocean Station P in the eastern subarctic North Pacific and in Saanich Inlet at the south end of Vancouver Island, British Columbia, Canada, to examine production of turbulent dissipation by swimming marine organisms. At Ocean Station P, although a number of zooplankton species are large enough to generate turbulence with Reynolds numbers Re > 1000, biomass densities are typically less than 103 individuals per cubic meter (<0.01% by volume), and turbulent kinetic energy dissipation rates ε were better correlated with 16-m vertical shear than acoustic backscatter layers. In Saanich Inlet, where krill densities are up to 104 individuals per cubic meter (0.1% by volume), no dramatic elevation of dissipation rates ε was associated with dusk and dawn vertical migrations of the acoustic backscatter layer. Dissipation rates are a factor of 2 higher [〈ε〉 = 1.4 × 10−8 W kg−1, corresponding to buoyancy Re = 〈ε〉/(νN2) ∼ 140] in acoustic backscatter layers than in acoustically quiet waters, regardless of whether they are vertically migrating. The O(1 m) thick turbulence patches have vertical wavenumber spectra for microscale shear commensurate with the Nasmyth model turbulence spectrum. However, the turbulence bursts of O(10−5 W kg−1) proposed to occur in such dense swarms appear to be rare. Thus far, intense turbulent bursts have been found infrequently, even in very dense aggregations O(104 individuals per cubic meter) characteristic of coastal and high-latitude environs. Based on sampling to date, this corresponds to a frequency of occurrence of less than 4%, suggesting that turbulence production by the marine biosphere is not efficient.

* Current affiliation: Québec-Océan, Département de Biologie, Université Laval, Quebec City, Quebec, Canada

Corresponding author address: Eric Kunze, SEOS, University of Victoria, P.O. Box 3055, STN CSC, Victoria BC V8W 3P6, Canada. Email: kunze@uvic.ca

Save