• Atlas, R., J. Ardizzone, and R. N. Hoffman, 2008: Application of satellite surface wind data to ocean wind analysis. Remote Sensing System Engineering, P. E. Ardanuy and J. J. Puschell, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7087), doi:10.1117/12.795371.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., 1990: Equilibrium spectra of wind waves. J. Phys. Oceanogr., 20 , 966984.

  • Brekhovskikh, L. M., 1966: Underwater sound waves generated by surface waves in the ocean. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 2 , 970980.

    • Search Google Scholar
    • Export Citation
  • Bréon, F. M., and N. Henriot, 2006: Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions. J. Geophys. Res., 111 , C06005. doi:10.1029/2005JC003343.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, 315A , 509562.

    • Search Google Scholar
    • Export Citation
  • Duennebier, F. K., D. W. Harris, J. Jolly, J. Babinec, D. Copson, and K. Stiffel, 2002: The Hawaii-2 Observatory seismic system. IEEE J. Oceanic Eng., 27 , 212217.

    • Search Google Scholar
    • Export Citation
  • Elfouhaily, T., B. Chapron, K. Katsuros, and D. Vandemark, 1997: A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res., 102 , 1578115796.

    • Search Google Scholar
    • Export Citation
  • Ewans, K. C., 1998: Observations of the directional spectrum of fetch-limited waves. J. Phys. Oceanogr., 28 , 495512.

  • Farrell, W. E., and W. Munk, 2008: What do deep sea pressure fluctuations tell about short surface waves? Geophys. Res. Lett., 35 , L19605. doi:10.1029/2008GL035008.

    • Search Google Scholar
    • Export Citation
  • Heron, M. L., W. J. Skirving, and K. J. Michael, 2006: Short-wave ocean wave slope models for use in remote sensing data analysis. IEEE Trans. Geosci. Remote Sens., 44 , 19621973.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and D. W. Wang, 2001: Directional distributions and mean square slopes in the equilibrium and saturation ranges of the wave spectrum. J. Phys. Oceanogr., 31 , 13461360.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kedar, S., M. Longuet-Higgins, F. Webb, N. Graham, R. Clayton, and C. Jones, 2008: The origin of deep ocean microseisms in the North Atlantic Ocean. Proc. Roy. Soc. London, 464A , 777793.

    • Search Google Scholar
    • Export Citation
  • Kibblewhite, A. C., and K. C. Ewans, 1985: Wave-wave interactions, microseisms, and infra-sonic ambient noise in the ocean. J. Acoust. Soc. Amer., 78 , 981994.

    • Search Google Scholar
    • Export Citation
  • Kibblewhite, A. C., and C. Y. Wu, 1996: Wave Interactions as a Seismo-Acoustic Source. Springer-Verlag, 313 pp.

  • Lamb, 1932: Hydrodynamics. 6th ed. Cambridge University Press, 738 pp.

  • Longuet-Higgins, M. S., 1950: A theory of microseisms. Philos. Trans. Roy. Soc. London, 243 , 135.

  • Longuet-Higgins, M. S., D. E. Cartwright, and N. D. Smith, 1963: Observations of the directional spectrum of sea waves using the motions of a flotation buoy. Ocean Wave Spectra, Prentice-Hall, 111–136.

    • Search Google Scholar
    • Export Citation
  • McCreery, C. S., F. K. Duennebier, and G. H. Sutton, 1993: Correlation of deep ocean noise (0.4–30 Hz) with wind, and the Holu Spectrum—A worldwide constant. J. Acoust. Soc. Amer., 93 , 26392648.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 2009: An inconvenient sea truth: Spread, steepness and skewness of surface slopes. Annu. Rev. Mater. Sci., 1 , 377415.

  • Phillips, O. M., 1958: The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech., 4 , 426434.

  • Tyler, G. L., C. C. Teague, R. H. Stewart, A. M. Peterson, W. H. Munk, and J. W. Joy, 1974: Wave directional spectra from synthetic aperture observations of radio scatter. Deep-Sea Res., 21 , 9891016.

    • Search Google Scholar
    • Export Citation
  • Webb, S. C., and C. S. Cox, 1986: Observations and modeling of seafloor microseisms. J. Geophys. Res., 91 , 73437358.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 89 51 5
PDF Downloads 46 30 5

Booms and Busts in the Deep

View More View Less
  • 1 Science Applications International Corporation, McLean, Virginia
  • | 2 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Restricted access

Abstract

Deep sea (5 km) pressure and velocity at the Hawaii-2 Observatory (H2O), midway between Hawaii and California, exhibit a number of remarkable features that are interpreted using the Longuet–Higgins theory of acoustic radiation from oppositely directed surface waves. A change in the slope of the bottom spectra near 5 Hz can be associated with a transition near 2.5 Hz (25-cm wavelength) of the surface wave spectrum from the classical κ−4 saturated (wind independent) Phillips spectrum to a distinct band of ultragravity waves. Bottom spectra are remarkably stable. Occasional 15-dB busts in the gravities and booms in the ultragravities are prominent features in the bottom records and can be associated with calms and storms at the sea surface. For strong winds, two broad lobes in the directional spectrum of the gravity waves are nearly perpendicular to the wind; as the wind drops, the lobes become narrower and more nearly aligned with the wind, leading to busts.

Corresponding author address: W. E. Farrell, 13765 Durango Drive, Del Mar, CA 92014. Email: wef@farrell-family.org

Abstract

Deep sea (5 km) pressure and velocity at the Hawaii-2 Observatory (H2O), midway between Hawaii and California, exhibit a number of remarkable features that are interpreted using the Longuet–Higgins theory of acoustic radiation from oppositely directed surface waves. A change in the slope of the bottom spectra near 5 Hz can be associated with a transition near 2.5 Hz (25-cm wavelength) of the surface wave spectrum from the classical κ−4 saturated (wind independent) Phillips spectrum to a distinct band of ultragravity waves. Bottom spectra are remarkably stable. Occasional 15-dB busts in the gravities and booms in the ultragravities are prominent features in the bottom records and can be associated with calms and storms at the sea surface. For strong winds, two broad lobes in the directional spectrum of the gravity waves are nearly perpendicular to the wind; as the wind drops, the lobes become narrower and more nearly aligned with the wind, leading to busts.

Corresponding author address: W. E. Farrell, 13765 Durango Drive, Del Mar, CA 92014. Email: wef@farrell-family.org

Save