Interannual to Interdecadal Variabilities of the Indonesian Throughflow Source Water Pathways in the Pacific Ocean

Vinu Valsala CGER, National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Vinu Valsala in
Current site
Google Scholar
PubMed
Close
,
Shamil Maksyutov CGER, National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Shamil Maksyutov in
Current site
Google Scholar
PubMed
Close
, and
Raghu Murtugudde ESSIC, University of Maryland, College Park, College Park, Maryland

Search for other papers by Raghu Murtugudde in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Some of the possible interannual to interdecadal variabilities of the Indonesian Throughflow (ITF) source water pathways in the Pacific Ocean are identified from an ocean reanalysis product provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) under the name Ocean Reanalysis, version S3 (ORA-S3). The data were used in an offline mode to evolve adjoint pathways of a passive tracer, which is injected from the key channels of the Indonesian straits where the ITF enters into the Indian Ocean. The adjoint pathways are simulated using interannually varying circulations for 41 yr starting from December 2000 to January 1960 with reversed currents and other physical parameters (control run). A climatological run for the 41 yr is produced with the reversed currents and other physical parameters as a monthly climatology. The adjoint pathway variability is found by subtracting the climatological run from the control run. The empirical orthogonal function (EOF) analysis carried out over the monthly differences between the tracer concentrations of the control run and the climatological run shows that the ITF is largely supplied from the northwestern tropical Pacific during a normal year, whereas the supply from the south equatorial Pacific is dominant during El Niño–Southern Oscillation (ENSO) years at a lag of 6 months. The interannual variability of the ITF source water pathways in the Pacific is largely determined by the ENSO variability and they are confined to the tropical Pacific, whereas the corresponding interdecadal variability is controlled by the meridional overturning circulations in the tropical and subtropical Pacific. The adjoint pathways hint that the ITF volume transport may have interdecadal variability; they are closely related to the variability of the subtropical cells (STCs) in the Pacific Ocean and can be quantified using the tropical convergence changes. The ITF is just an active member of the recharge–discharge of tropical warm waters at all time scales, and its role in the coupled climate variability of the Indo-Pacific needs to be assessed in that context.

Corresponding author address: Dr. Vinu Valsala, CAT/ESSC, Indian Institute for Tropical Meteorology (IITM), Pune 411 008, India. E-mail: valsala@tropmet.res.in

Abstract

Some of the possible interannual to interdecadal variabilities of the Indonesian Throughflow (ITF) source water pathways in the Pacific Ocean are identified from an ocean reanalysis product provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) under the name Ocean Reanalysis, version S3 (ORA-S3). The data were used in an offline mode to evolve adjoint pathways of a passive tracer, which is injected from the key channels of the Indonesian straits where the ITF enters into the Indian Ocean. The adjoint pathways are simulated using interannually varying circulations for 41 yr starting from December 2000 to January 1960 with reversed currents and other physical parameters (control run). A climatological run for the 41 yr is produced with the reversed currents and other physical parameters as a monthly climatology. The adjoint pathway variability is found by subtracting the climatological run from the control run. The empirical orthogonal function (EOF) analysis carried out over the monthly differences between the tracer concentrations of the control run and the climatological run shows that the ITF is largely supplied from the northwestern tropical Pacific during a normal year, whereas the supply from the south equatorial Pacific is dominant during El Niño–Southern Oscillation (ENSO) years at a lag of 6 months. The interannual variability of the ITF source water pathways in the Pacific is largely determined by the ENSO variability and they are confined to the tropical Pacific, whereas the corresponding interdecadal variability is controlled by the meridional overturning circulations in the tropical and subtropical Pacific. The adjoint pathways hint that the ITF volume transport may have interdecadal variability; they are closely related to the variability of the subtropical cells (STCs) in the Pacific Ocean and can be quantified using the tropical convergence changes. The ITF is just an active member of the recharge–discharge of tropical warm waters at all time scales, and its role in the coupled climate variability of the Indo-Pacific needs to be assessed in that context.

Corresponding author address: Dr. Vinu Valsala, CAT/ESSC, Indian Institute for Tropical Meteorology (IITM), Pune 411 008, India. E-mail: valsala@tropmet.res.in
Save
  • Anderson, D. L. T., and M. Balmaseda, 2005: Overview of ocean models at ECMWF. Proc. Seminar on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, Reading, United Kingdom, ECMWF, 103–111.

    • Search Google Scholar
    • Export Citation
  • Atmadipoera, A., R. Molcard, G. Madec, S. Wijffels, J. Sprintall, A. Koch-Larrouy, I. Jaya, and A. Supangat, 2009: Characteristics and variability of the Indonesian Throughflow water at the outflow straits. Deep-Sea Res., 56, 19421954, doi:10.1016/j.dsr.2009.06.004.

    • Search Google Scholar
    • Export Citation
  • Ballabrera-Poy, J., R. Murtugudde, and A. J. Busalacchi, 2002: On the potential impact of sea surface salinity observations on ENSO predictions. Geophys. Res. Lett., 107, 8007, doi:10.1029/2001JC000834.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., A. Vidard, and D. L. T. Anderson, 2008: The ECMWF ocean analysis system: ORA-S3. Mon. Wea. Rev., 136, 30183034.

  • Blanke, B., M. Arhan, G. Madec, and S. Roche, 1999: Warm water paths in the equatorial Atlantic as diagnosed with a general circulation model. J. Phys. Oceanogr., 29, 27532768.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., M. Arhan, S. Speich, and K. Pailler, 2002: Diagnosing and picturing the North Atlantic segment of the global conveyor belt by means of an ocean general circulation model. J. Phys. Oceanogr., 32, 14301451.

    • Search Google Scholar
    • Export Citation
  • Chavez, F. P., J. Ryan, S. E. Lluch-Cota, and M. Niquen, 2003: From anchovies to sardines and back: Multidecadal change in the Pacific Ocean. Science, 299, 217221.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Dutay, J. C., and Coauthors, 2002: Evaluation of ocean model ventilation with CFC-11: Comparison of 13 global ocean models. Ocean Modell., 4, 89120.

    • Search Google Scholar
    • Export Citation
  • England, M. H., 1995: Using chlorofluorocarbons to assess ocean climate models. Geophys. Res. Lett., 22, 30513054.

  • England, M. H., and F. Huang, 2005: On the interannual variability of the Indonesian Throughflow and its linkage with ENSO. J. Climate, 18, 14351444.

    • Search Google Scholar
    • Export Citation
  • Fieux, M., C. Andrié, A. P. Delecluse, A. G. Ilahude, A. Kartavseff, F. Mantisi, R. Molcard, and J. C. Swallow, 1994: Measurements within the Pacific-Indian oceans throughflow region. Deep-Sea Res., 41, 10911130.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., T. Lee, B. Cheng, and D. Menemenlis, 2004: The origin, pathway, and destination of Niño-3 water estimated by a simulated passive tracer and its adjoint. J. Phys. Oceanogr., 34, 582604.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Godfrey, J. S., 1989: A Sverdrup model of the depth-integrated flow for the world ocean allowing for island circulations. Geophys. Astrophys. Fluid Dyn., 45, 89112.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., 1996: The effect of the Indonesian Throughflow on ocean circulation and heat exchange with the atmosphere: A review. J. Geophys. Res., 12, 12 21712 237.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., A. C. Hirst, and J. Wilkin, 1993: Why does the Indonesian Throughflow appear to originate from the North Pacific? J. Phys. Oceanogr., 23, 10871098.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and R. A. Fine, 1996: Pathways of water between the Pacific and Indian Oceans in the Indonesian Seas. Nature, 379, 146149.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., R. D. Susanto, and K. Vranes, 2003: Cool Indonesian Throughflow as a consequence of restricted surface flow. Nature, 425, 824828.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., R. D. Susanto, A. Ffield, B. A. Huber, W. Pranawo, and S. Wirasantosa, 2008: Makassar Strait throughflow, 2004 to 2006. Geophys. Res. Lett., 35, L24605, doi:10.1029/2008GL036372.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., J. Sprintall, H. M. Van Aken, D. Susanto, S. Wijffels, R. Molcard, A. Ffield, W. Pranowo, and S. Wirasantosa, 2010: The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. Dyn. Atmos. Oceans, 50, 115128.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805807.

    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2010: Patterns of Indian Ocean sea-level change in a warming climate. Nat. Geosci., 29, 546550, doi:10.1038/NGEO901.

    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., and J. S. Godfrey, 1993: The role of Indonesian Throughflow in a global OGCM. J. Phys. Oceanogr., 23, 10571086.

  • Hourdin, F., and O. Talagrand, 2006: Eulerian backtracking of atmospheric tracers. I: Adjoint derivation and parametrization of subgrid-scale transport. Quart. J. Roy. Meteor. Soc., 132, 567583.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., O. Talagrand, and A. Idelkadi, 2006: Eulerian backtracking of atmospheric tracers. II: Numerical aspects. Quart. J. Roy. Meteor. Soc., 132, 585603.

    • Search Google Scholar
    • Export Citation
  • Inoue, M., and S. E. Welsh, 1993: Modeling seasonal variability in the wind-driven upper-layer circulation in the Indo-Pacific region. J. Phys. Oceanogr., 23, 14111436.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., and J. Potemra, 2008: Sensitivity of tropical rainfall to Banda Sea diffusivity in the Community Climate System Model. J. Climate, 21, 64456454.

    • Search Google Scholar
    • Export Citation
  • Key, R. M., and Coauthors, 2004: A global ocean carbon climatology: Results from Global Ocean Data Analysis Project (GLODAP). Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/2004GB002247.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., J. P. McCreary, and B. A. Klinger, 1999: A mechanism for the decadal variation of ENSO. Geophys. Res. Lett., 26, 17431747.

    • Search Google Scholar
    • Export Citation
  • Koch-Larrouy, A., G. Madec, B. Blanke, and R. Molcard, 2008a: Water mass transformation along the Indonesian Throughflow in an OGCM. Ocean Dyn., 58, 289309, doi:10.1007/s10236-008-0155-4.

    • Search Google Scholar
    • Export Citation
  • Koch-Larrouy, A., G. Madec, D. Iudicone, A. Atmadipoera, and R. Molcard, 2008b: Physical processes contributing to the water mass transformation of the Indonesian Throughflow. Ocean Dyn., 58, 275288, doi:10.1007/s10236-008-0154-5.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Ocean vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Lukas, R. E., P. Firing, P. L. Richardson, C. A. Collins, R. Fine, and R. Gammon, 1991: Observations of the Mindanao Current during the Western Equatorial Pacific Ocean Circulation Study. J. Geophys. Res., 96, 70897104.

    • Search Google Scholar
    • Export Citation
  • Maes, C., M. J. McPhaden, and D. Behringer, 2002: Signatures of salinity variability in tropical Pacific Ocean dynamic height anomalies. J. Geophys. Res., 107, 8012, doi:10.1029/2000JC000737.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. Hare, Y. Zhang, J. Wallace, and R. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and T. Yamagata, 1993: Simulated seasonal circulation in the Indonesian Seas. J. Geophys. Res., 98, 12 50112 509.

  • McCreary, J. P., and P. Lu, 1994: On the interaction between the subtropical and the equatorial oceans: The subtropical cell. J. Phys. Oceanogr., 24, 466497.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M., and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper North Pacific. Nature, 415, 603608.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., 1996: Variation of Indonesian Throughflow and the El Niño-Southern Oscillation. J. Geophys. Res., 101, 12 22512 226.

  • Miyama, T., J. P. McCreary, T. G. Jensen, J. Loschnigg, S. Godfrey, and A. Ishida, 2003: Structure and dynamics of the Indian-Ocean cross-equatorial cell. Deep-Sea Res., 50, 20232047.

    • Search Google Scholar
    • Export Citation
  • Molcard, S. P., M. Fieux, and M. Ilahude, 1996: The Indo-Pacific throughflow in the Timor Passage. J. Geophys. Res., 101, 12 41112 420.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., A. J. Busalacchi, and J. Beauchamp, 1998: Seasonal to interannual effects of the Indonesian throughflow on the tropical Indo-Pacific basin. J. Geophys. Res., 103, 21 42521 441.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290.

    • Search Google Scholar
    • Export Citation
  • Pariwono, J. I., J. A. T. Bye, and G. W. Lennon, 1986: Long-period variations of sea-level in Australia. Geophys. J. Roy. Astron. Soc., 87, 4354.

    • Search Google Scholar
    • Export Citation
  • Peters, H., M. C. Gregg, and J. M. Toole, 1988: On the parameterization of equatorial turbulence. J. Geophys. Res., 136, 11991218.

  • Piola, A., and A. Gordon, 1984: Pacific and Indian Ocean upper-layer salinity budget. J. Phys. Oceanogr., 14, 747753.

  • Potemra, J. T., and N. Schneider, 2007: Influence of low-frequency Indonesian Throughflow transport on temperatures in the Indian Ocean in a coupled model. J. Climate, 20, 13391352.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and R. Lukas, 1996: Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current and the Kuroshio along the Pacific western boundary. J. Geophys. Res., 101, 12 31512 330.

    • Search Google Scholar
    • Export Citation
  • Redi, M., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158.

  • Rodgers, K. B., P. Friederichs, and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J. Climate, 17, 37613774.

    • Search Google Scholar
    • Export Citation
  • Santoso, A., W. Cai, M. H. England, and S. J. Phipps, 2010: The role of the Indonesian Throughflow on ENSO dynamics in a coupled climate model. J. Climate, 24, 585601.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., 1998: The Indonesian Throughflow and the global climate system. J. Climate, 11, 676689.

  • Semtner, A. J., and R. M. Chervin, 1992: Ocean general circulation from a global eddy-resolving model. J. Geophys. Res., 97, 54935550.

    • Search Google Scholar
    • Export Citation
  • Song, Q., A. L. Gordon, and M. Visbeck, 2004: Spreading of Indonesian Throughflow in the Indian Ocean. J. Phys. Oceanogr., 34, 772792.

    • Search Google Scholar
    • Export Citation
  • Speich, S., B. Blanke, and W. Cai, 2007: Atlantic meridional overturning circulation and the Southern Hemisphere supergyre. Geophys. Res. Lett., 34, L23614, doi:10.1029/2007GL031583.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., S. Wijffels, R. Molcard, and I. Jaya, 2010: Direct evidence of the South Java Current system in Ombai Strait. Dyn. Atmos. Oceans, 50, 140156, doi:10.1016/j.dynatmoce.2010.02.006.

    • Search Google Scholar
    • Export Citation
  • Susanto, R. D., G. Fang, I. Soesilo, Q. Zheng, F. Qiao, and Z. Wei, 2010: New surveys of a branch of the Indonesian Throughflow. Eos, Trans. Amer. Geophys. Union, 91, 261263.

    • Search Google Scholar
    • Export Citation
  • Toole, J., and M. Raymer, 1985: Heat and freshwater budgets of the Indian Ocean—Revisited. Deep-Sea Res., 32, 917928.

  • Valsala, V., 2009: Different spreading of Somali and Arabian coastal upwelled waters in the northern Indian Ocean: A case study. J. Oceanogr. Soc. Japan, 65, 803816.

    • Search Google Scholar
    • Export Citation
  • Valsala, V., and M. Ikeda, 2007: Pathways and effects of the Indonesian Throughflow water in the Indian Ocean using particle trajectory and tracers in an OGCM. J. Climate, 20, 29943017.

    • Search Google Scholar
    • Export Citation
  • Valsala, V., S. Maksyutov, and M. Ikeda, 2008: Design and validation of an offline oceanic tracer transport model for a carbon cycle study. J. Climate, 21, 27522769.

    • Search Google Scholar
    • Export Citation
  • Valsala, V., M. Alsibai, S. Maksyutov, and M. Ikeda, 2010a: Interannual variability of CFC-11 absorption by the ocean: An offline model study. Climate Dyn., 36, 14351452, doi:10.1007/s00382-010-0784-4.

    • Search Google Scholar
    • Export Citation
  • Valsala, V., S. Maksyutov, and R. Murtugudde, 2010b: Possible interannual to interdecadal variabilities of the Indonesian Throughflow (ITF) water pathways in the Indian Ocean. J. Geophys. Res., 115, C10016, doi:10.1029/2009JC005735.

    • Search Google Scholar
    • Export Citation
  • Van Aken, H. M., I. S. Brodjonegoro, and I. Jaya, 2009: The deep-water motion through the Lifamatola Passage and its contribution to the Indonesian Throughflow. Deep-Sea Res., 56, 12031216.

    • Search Google Scholar
    • Export Citation
  • Vranes, K., and A. L. Gordon, 2005: Comparison of Indonesian Throughflow transport observations, Makassar Strait to eastern Indian Ocean. Geophys. Res. Lett., 32, L10606, doi:10.1029/2004GL022158.

    • Search Google Scholar
    • Export Citation
  • Vranes, K., A. L. Gordon, and A. Ffield, 2002: The heat transport of the Indonesian Throughflow and implications for the Indian Ocean heat budget. Deep-Sea Res., 49, 13911401.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., 1993a: The circulation of depth integrated flow around an island with application to the Indonesian Throughflow. J. Phys. Oceanogr., 23, 14701484.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., 1993b: A simple model of the Indonesian Throughflow and its composition. J. Phys. Oceanogr., 23, 26832703.

  • Wajsowicz, R. C., and E. K. Schneider, 2001: The Indonesian Throughflow’s effect on global climate determined from the COLA coupled climate system. J. Climate, 14, 30293042.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and R. H. Weisberg, 1994: On the “slow mode” mechanism in ENSO-related coupled ocean–atmosphere models. J. Climate, 7, 16571667.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1987: Indonesian Throughflow and the associated pressure gradient. J. Geophys. Res., 92, 12 94112 946.

  • Yamagata, T., K. Mizuno, and Y. Masumoto, 1996: Seasonal variations in the equatorial Indian Ocean and their impact on the Lambok Throughflow. J. Geophys. Res., 101, 12 46512 473.

    • Search Google Scholar
    • Export Citation
  • You, Y., and M. Tomczak, 1993: Thermohaline circulation and ventilation in the Indian Ocean derived from water mass analysis. Deep-Sea Res., 40, 1356.

    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., and C. Mechoso, 2001: A coupled atmosphere–ocean GCM study of the ENSO cycle. J. Climate, 14, 23292350.

  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 258 83 11
PDF Downloads 147 31 8