The Impact of Open Oceanic Processes on the Antarctic Bottom Water Outflows

Shinichiro Kida Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Shinichiro Kida in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of open oceanic processes on the Antarctic Bottom Water (AABW) outflows is investigated using a numerical model with a focus on outflows that occur through deep channels. A major branch of the AABW outflow is known to occur as an overflow from the Filchner Depression to the Weddell Sea through a deep channel a few hundred kilometers wide and a sill roughly 500 m deep. When this overflow enters the Weddell Sea, it encounters the Antarctic Slope Front (ASF) at the shelf break, a density front commonly found along the Antarctic continental shelf break. The presence of an AABW outflow and the ASF create a v-shaped isopycnal structure across the shelf break, indicating an interaction between the overflow and oceanic processes. Model experiments show the overflow transport to increase significantly when an oceanic wind stress increases the depth of the ASF. This enhancement of overflow transport occurs because the channel walls allow a pressure gradient in the along-slope direction to exist and the overflow transport is geostrophically controlled with its ambient oceanic water at the shelf break. Because the ASF is associated with a lighter water mass that reaches the depth close to that of the channel, an increase in its depth increases the density gradient across the shelf break and therefore the geostrophic overflow transport. The enhancement of overflow transport is also likely to result in a lighter overflow water mass, although such an adjustment of density likely occurs on a much longer time scale than the adjustment of transport.

Corresponding author address: Shinichiro Kida, Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan. E-mail: kidas@jamstec.go.jp

Abstract

The impact of open oceanic processes on the Antarctic Bottom Water (AABW) outflows is investigated using a numerical model with a focus on outflows that occur through deep channels. A major branch of the AABW outflow is known to occur as an overflow from the Filchner Depression to the Weddell Sea through a deep channel a few hundred kilometers wide and a sill roughly 500 m deep. When this overflow enters the Weddell Sea, it encounters the Antarctic Slope Front (ASF) at the shelf break, a density front commonly found along the Antarctic continental shelf break. The presence of an AABW outflow and the ASF create a v-shaped isopycnal structure across the shelf break, indicating an interaction between the overflow and oceanic processes. Model experiments show the overflow transport to increase significantly when an oceanic wind stress increases the depth of the ASF. This enhancement of overflow transport occurs because the channel walls allow a pressure gradient in the along-slope direction to exist and the overflow transport is geostrophically controlled with its ambient oceanic water at the shelf break. Because the ASF is associated with a lighter water mass that reaches the depth close to that of the channel, an increase in its depth increases the density gradient across the shelf break and therefore the geostrophic overflow transport. The enhancement of overflow transport is also likely to result in a lighter overflow water mass, although such an adjustment of density likely occurs on a much longer time scale than the adjustment of transport.

Corresponding author address: Shinichiro Kida, Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan. E-mail: kidas@jamstec.go.jp
Save
  • Baba, Y., K. Takahashi, T. Sugimura, and K. Goto, 2010: Dynamical core of an atmospheric general circulation model on a yin-yang grid. Mon. Wea. Rev., 138, 39884005.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 2009: A model for the structure of the Antarctic Slope Front. Deep-Sea Res. II, 56, 859873.

  • Bindoff, N. L., M. A. Rosenberg, and M. J. Warner, 2000: On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150°E. Deep-Sea Res. II, 47, 22992326.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 2000: The influence of an alongshelf current on the formation and offshore transport of dense water from a coastal polynya. J. Geophys. Res., 105 (C10), 24 00724 019.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., 1994: Introduction to Geophysical Fluid Dynamics. Prentice-Hall, 320 pp.

  • Fahrbach, E., G. Rohardt, and G. Krause, 1992: The Antarctic Coastal Current in the southeastern Weddell Sea. Polar Biol., 12, 171182.

    • Search Google Scholar
    • Export Citation
  • Fahrbach, E., G. Rohardt, M. Schroder, and V. Strass, 1994: Transport and structure of the Weddell gyre. Ann. Geophys., 12, 840855.

  • Foldvik, A., and Coauthors, 2004: Ice shelf water overflow and bottom water formation in the southern Weddell Sea. J. Geophys. Res., 109, C02015, doi:10.1029/2003JC002008.

    • Search Google Scholar
    • Export Citation
  • Foster, T. D., and E. C. Carmack, 1976: Frontal zone mixing and Antarctic Bottom water formation in the southern Weddell Sea. Deep-Sea Res. Oceanogr. Abstr., 23, 301317.

    • Search Google Scholar
    • Export Citation
  • Gawarkiewicz, G., 2000: Effects of ambient stratification and shelfbreak topography on offshore transport of dense water on continental shelves. J. Geophys. Res., 105 (C2), 33073324.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1973: Circulation and bottom water production in the Weddell Sea. Deep-Sea Res. Oceanogr. Abstr., 20, 111140.

  • Gordon, A. L., B. A. Huber, H. H. Hellmer, and A. Ffield, 1993: Deep and bottom water of the Weddell Sea’s western rim. Science, 262, 9597.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., A. H. Orsi, R. Muench, B. A. Huber, E. Zambianchi, and M. Visbeck, 2009: Western Ross Sea continental slope gravity currents. Deep-Sea Res. II, 56, 796817.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., B. Huber, D. McKee, and M. Visbeck, 2010: A seasonal cycle in the export of bottom water from the Weddell Sea. Nat. Geosci., 3, 551556, doi:10.1038/ngeo916.

    • Search Google Scholar
    • Export Citation
  • Guan, X., H. W. Ou, and D. Chen, 2009: Tidal effect on the dense water discharge, Part 2: A numerical study. Deep-Sea Res. II, 56, 884894.

    • Search Google Scholar
    • Export Citation
  • Helfrich, K. R., and L. J. Pratt, 2003: Rotating hydraulics and upstream basin circulation. J. Phys. Oceanogr., 33, 16511663.

  • Helfrich, K. R., A. C. Kuo, and L. J. Pratt, 1999: Nonlinear Rossby adjustment in a channel. J. Fluid Mech., 390, 187222.

  • Heywood, K. J., R. A. Locarnini, R. D. Frew, P. F. Dennis, and B. A. King, 1998: Transport and water masses of the Antarctic Slope Front system in the eastern Weddell Sea. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margins, S. S. Jacobs and R. F. Weiss, Eds., Antarctic Research Series, Vol. 74, Amer. Geophys. Union, 203–214.

    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., A. C. Naveira Garabato, D. P. Stevens, and R. D. Muench, 2004: On the fate of the Antarctic Slope Front and the origin of the Weddell Front. J. Geophys. Res., 109, C06021, doi:10.1029/2003JC002053.

    • Search Google Scholar
    • Export Citation
  • Hirano, D., Y. Kitade, H. Nagashima, and M. Matsuyama, 2010: Characteristics of observed turbulent mixing across the Antarctic Slope Front at 140°E, east Antarctica. J. Oceanogr., 66, 95104.

    • Search Google Scholar
    • Export Citation
  • Hunkins, K., and J. A. Whitehead, 1992: Laboratory simulation of exchange through Fram Strait. J. Geophys. Res., 97 (C7), 11 29911 321.

    • Search Google Scholar
    • Export Citation
  • Ivanov, V. V., and P. N. Golovin, 2007: Observations and modeling of dense water cascading from the northwestern Laptev Sea shelf. J. Geophys. Res., 112, C09003, doi:10.1029/2006JC003882.

    • Search Google Scholar
    • Export Citation
  • Ivanov, V. V., G. I. Shapiro, J. M. Huthnance, D. L. Aleynik, and P. N. Golovin, 2004: Cascades of dense water around the world ocean. Prog. Oceanogr., 60, 4798, doi:10.1016/j.pocean.2003.12.002.

    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., 1991: On the nature and significance of the Antarctic Slope Front. Mar. Chem., 35, 924.

  • Jiang, L., and R. W. Garwood Jr., 1996: Three-dimensional simulations of overflows on continental slopes. J. Phys. Oceanogr., 26, 12141233.

    • Search Google Scholar
    • Export Citation
  • Jiang, L., and R. W. Garwood Jr., 1998: Effects of topographic steering and ambient stratification on overflows on continental slopes: A model study. J. Geophys. Res., 103 (C3), 54595476.

    • Search Google Scholar
    • Export Citation
  • Jullion, L., S. C. Jones, A. C. Naveira Garabato, and M. P. Meredith, 2010: Wind-controlled export of Antarctic Bottom Water from the Weddell Sea. Geophys. Res. Lett., 37, L09609, doi:10.1029/2010GL042822.

    • Search Google Scholar
    • Export Citation
  • Kida, S., J. F. Price, and J. Yang, 2008: The upper-oceanic response to overflows: A mechanism for the Azores Current. J. Phys. Oceanogr., 38, 880895.

    • Search Google Scholar
    • Export Citation
  • Kida, S., J. Yang, and J. F. Price, 2009: Marginal Sea overflows and the upper ocean interaction. J. Phys. Oceanogr., 39, 387403.

  • Killworth, P. D., 1977: Mixing on the Weddell Sea continental slope. Deep-Sea Res., 24, 427448.

  • Köhl, A., R. H. Käse, D. Stammer, and N. Serra, 2007: Causes of changes in the Denmark Strait overflow. J. Phys. Oceanogr., 37, 16781696.

    • Search Google Scholar
    • Export Citation
  • Legg, S., R. W. Hallberg, and J. B. Girton, 2006: Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models. Ocean Modell., 11, 6997, doi:10.1016/j.ocemod.2004.11.006.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and Coauthors, 2009: Improving oceanic overflow representation in climate models: The Gravity Current Entrainment Climate Process Team. Bull. Amer. Meteor. Soc., 90, 657670.

    • Search Google Scholar
    • Export Citation
  • Matsumura, Y., and H. Hasumi, 2010: Modeling ice shelf water overflow and bottom water formation in the southern Weddell Sea. J. Geophys. Res., 115, C10033, doi:10.1029/2009JC005841.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., A. C. Naveira Garabato, A. L. Gordon, and G. C. Johnson, 2008: Evolution of the deep and bottom waters of the Scotia Sea, Southern Ocean, during 1995–2005. J. Climate, 21, 33273343.

    • Search Google Scholar
    • Export Citation
  • Muench, R. D., and A. L. Gordon, 1995: Circulation and transport of water along the western Weddell Sea margin. J. Geophys. Res., 100, 18 50318 515.

    • Search Google Scholar
    • Export Citation
  • Muench, R. D., L. Padman, A. Gordon, and A. Orsi, 2009: A dense water outflow from the Ross Sea, Antarctica: Mixing and the contribution of tides. J. Mar. Syst., 77, 369387.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., and C. L. Wiederwohl, 2009: A recount of Ross Sea waters. Deep-Sea Res. II, 56, 778795, doi:10.1016/j.dsr2.2008.10.033.

  • Orsi, A. H., G. C. Johnson, and J. L. Bullister, 1999: Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr., 43, 55109.

    • Search Google Scholar
    • Export Citation
  • Ou, H. W., X. Guan, and D. Chen, 2009: Tidal effect on the dense water discharge, Part 1: Analytical model. Deep-Sea Res. II, 56, 874883.

    • Search Google Scholar
    • Export Citation
  • Padman, L., S. L. Howard, A. H. Orsi, and R. D. Muench, 2009: Tides of the northwestern Ross Sea and their impact on dense outflows of Antarctic Bottom Water. Deep-Sea Res. II, 56, 818834.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., and M. O. Baringer, 1994: Outflows and deep water production by marginal seas. Prog. Oceanogr., 33, 161200.

  • Price, J. F., and J. Yang, 1998: Marginal Sea overflows for climate simulations. Ocean Modelling and Parameterization, E. Chassignet and J. Vernon, Eds., Kluwer Academic, 155–170.

    • Search Google Scholar
    • Export Citation
  • Smith, P. C., 1975: A streamtube model for bottom boundary currents in the ocean. Deep-Sea Res., 22, 853873.

  • Takahashi, K., X. Peng, R. Onishi, M. Ohdaira, K. Goto, H. Fuchigami, and T. Sugimura, 2008: Impact of coupled nonhydrostatic atmosphere–ocean–land model with high resolution. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds, Springer-Verlag, 261–274.

    • Search Google Scholar
    • Export Citation
  • Tamura, T., K. I. Ohshima, and S. Nihashi, 2008: Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett., 35, L07606, doi:10.1029/2007GL032903.

    • Search Google Scholar
    • Export Citation
  • Tanaka, K., and K. Akitomo, 2000: Density current descending along continental slope and the associated deep water formation: Two-dimensional numerical experiments with a non-hydrostatic model. J. Oceanogr., 56, 117130.

    • Search Google Scholar
    • Export Citation
  • Tanaka, K., and K. Akitomo, 2001: Baroclinic instability of density current along a sloping bottom and the associated transport process. J. Geophys. Res., 106, 26212638.

    • Search Google Scholar
    • Export Citation
  • Toulany, B., and C. Garrett, 1984: Geostrophic control of fluctuating barotropic flow through straits. J. Phys. Oceanogr., 14, 649655.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., and A. M. Thurnherr, 2009: High-resolution velocity and hydrographic observations of the Drygalski trough gravity plume. Deep-Sea Res. II, 56, 835842.

    • Search Google Scholar
    • Export Citation
  • Wahlin, A. K., 2002: Topographic steering of dense currents with application to submarines canyons. Deep-Sea Res. I, 49, 305320.

  • Warren, B. A., 1980: Deep circulation of the world ocean. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, Eds., MIT Press, 6–41.

    • Search Google Scholar
    • Export Citation
  • Whitworth, T., III, A. H. Orsi, S.-J. Kim, W. D. Nowlin Jr., and R. A. Locarnini, 1998: Water masses and mixing near the Antarctic Slope Front. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margins, S. S. Jacobs and R. F. Weiss, Eds., Antarctic Research Series, Vol. 74, Amer. Geophys. Union, 1–27.

    • Search Google Scholar
    • Export Citation
  • Wilchinsky, A. V., and D. L. Feltham, 2009: Numerical simulation of the Filchner overflow. J. Geophys. Res., 114, C12012, doi:10.1029/2008JC005013.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 169 56 2
PDF Downloads 127 25 1