Oceanic Rings and Jets as Statistical Equilibrium States

Antoine Venaille CNRS, Laboratoire de Physique ENS-Lyon, Lyon, France, and GFDL, AOS, Princeton, New Jersey

Search for other papers by Antoine Venaille in
Current site
Google Scholar
PubMed
Close
and
Freddy Bouchet CNRS, Laboratoire de Physique ENS-Lyon, Lyon, France

Search for other papers by Freddy Bouchet in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Equilibrium statistical mechanics of two-dimensional flows provides an explanation and a prediction for the self-organization of large-scale coherent structures. This theory is applied in this paper to the description of oceanic rings and jets, in the framework of a 1.5-layer quasigeostrophic model. The theory predicts the spontaneous formation of regions where the potential vorticity is homogenized, with strong and localized jets at their interface. Mesoscale rings are shown to be close to a statistical equilibrium: the theory accounts for their shape, drift, and ubiquity in the ocean, independently of the underlying generation mechanism. At basin scale, inertial states presenting midbasin eastward jets (and then different from the classical Fofonoff solution) are described as marginally unstable states. In that case, considering a purely inertial limit is a first step toward more comprehensive out-of-equilibrium studies that would take into account other essential aspects, such as wind forcing.

Corresponding author address: Antoine Venaille, Phys ENS-Lyon, 46 Allée d’Italie, 69007 Lyon, France. E-mail: antoine.venaille@ens-lyon.org

Abstract

Equilibrium statistical mechanics of two-dimensional flows provides an explanation and a prediction for the self-organization of large-scale coherent structures. This theory is applied in this paper to the description of oceanic rings and jets, in the framework of a 1.5-layer quasigeostrophic model. The theory predicts the spontaneous formation of regions where the potential vorticity is homogenized, with strong and localized jets at their interface. Mesoscale rings are shown to be close to a statistical equilibrium: the theory accounts for their shape, drift, and ubiquity in the ocean, independently of the underlying generation mechanism. At basin scale, inertial states presenting midbasin eastward jets (and then different from the classical Fofonoff solution) are described as marginally unstable states. In that case, considering a purely inertial limit is a first step toward more comprehensive out-of-equilibrium studies that would take into account other essential aspects, such as wind forcing.

Corresponding author address: Antoine Venaille, Phys ENS-Lyon, 46 Allée d’Italie, 69007 Lyon, France. E-mail: antoine.venaille@ens-lyon.org
Save
  • Abramov, R. V., and A. J. Majda, 2003: Statistically relevant conserved quantities for truncated quasigeostrophic flow. Proc. Natl. Acad. Sci. USA, 100, 3841–3846.

    • Search Google Scholar
    • Export Citation
  • Bouchet, F., 2001: Mécanique statistique des écoulements géophysiques. Ph.D. thesis, Université Joseph Fourier-Grenoble, 200 pp.

    • Search Google Scholar
    • Export Citation
  • Bouchet, F., 2008: Simpler variational problems for statistical equilibria of the 2D Euler equation and other systems with long range interactions. Physica D, 237, 1976–1981.

    • Search Google Scholar
    • Export Citation
  • Bouchet, F., and J. Sommeria, 2002: Emergence of intense jets and Jupiter’s Great Red Spot as maximum-entropy structures. J. Fluid Mech., 464, 165–207.

    • Search Google Scholar
    • Export Citation
  • Bouchet, F., and E. Simonnet, 2009: Random changes of flow topology in two-dimensional and geophysical turbulence. Phys. Rev. Lett., 102, doi:10.1103/PhysRevLett.102.094504.

    • Search Google Scholar
    • Export Citation
  • Bouchet, F., and M. Corvellec, 2010: Invariant measures of the 2D Euler and Vlasov equations. J. Stat. Mech., 2010, P08021 doi:10.1088/1742-5468/2010/08/P08021.

    • Search Google Scholar
    • Export Citation
  • Carnevale, G. F., and J. S. Frederiksen, 1987: Nonlinear stability and statistical mechanics of flow over topography. J. Fluid Mech., 175, 157–181.

    • Search Google Scholar
    • Export Citation
  • Chavanis, P., 2008: Statistical mechanics of 2D turbulence with a prior vorticity distribution. Physica D, 237, 1998–2002.

  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, doi:10.1029/2007GL030812.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., B. Tang, and E. P. Chassignet, 1990: Westward motion of mesoscale eddies. J. Phys. Oceanogr., 20, 758–768.

  • Dibattista, M. T., and A. J. Majda, 2000: An equilibrium statistical theory for large-scale features of open-ocean convection. J. Phys. Oceanogr., 30, 1325–1353.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., and M. Ghil, 2005: Low-frequency variability of the large-scale ocean circulation: A dynamical systems approach. Rev. Geophys., 43, RG3002, doi:10.1029/2002RG000122.

    • Search Google Scholar
    • Export Citation
  • Dubinkina, S., and J. Frank, 2010: Statistical relevance of vorticity conservation in the Hamiltonian particle-mesh method. J. Comput. Phys., 229, 2634–2648.

    • Search Google Scholar
    • Export Citation
  • Ellis, R. S., K. Haven, and B. Turkington, 2000: Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Stat. Phys., 101, 999–1064.

    • Search Google Scholar
    • Export Citation
  • Ellis, R. S., K. Haven, and B. Turkington, 2002: Nonequivalent statistical equilibrium ensembles and refined stability theorems for most probable flows. Nonlinearity, 15, 239–255.

    • Search Google Scholar
    • Export Citation
  • Eyink, G. L., and K. R. Sreenivasan, 2006: Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phys., 78, 87–135.

  • Flierl, G. R., 1987: Isolated eddy models in geophysics. Annu. Rev. Fluid Mech., 19, 493–530.

  • Fofonoff, N. P., 1954: Steady flow in a frictionless homogeneous ocean. J. Mar. Res., 13, 254–262.

  • Frederiksen, J. S., and T. J. O’Kane, 2008: Entropy, closures and subgrid modeling. Entropy, 10, 635–683.

  • Gelfand, I., and S. Fomin, 1967: Calculus of Variations. Prentice Hall, 240 pp.

  • Kraichnan, R. H., and D. Montgomery, 1980: Two-dimensional turbulence. Rep. Prog. Phys., 43, 547–619.

  • Majda, A. J., and X. Wang, 2006: Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press, 551 pp.

    • Search Google Scholar
    • Export Citation
  • Marston, B., 2011: Looking for new problems to solve? Consider the climate. Physics, 4, 20, doi:10.1103/Physics.4.20.

  • McWilliams, J. C., and G. R. Flierl, 1979: On the evolution of isolated, nonlinear vortices. J. Phys. Oceanogr., 9, 1155–1182.

  • Michel, J., and R. Robert, 1994: Large deviations for young measures and statistical mechanics of infinite dimensional dynamical systems with conservation law. Commun. Math. Phys., 159, 195–215.

    • Search Google Scholar
    • Export Citation
  • Miller, J., 1990: Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett., 65, 2137–2140, doi:10.1103/PhysRevLett.65.2137.

    • Search Google Scholar
    • Export Citation
  • Modica, L., 1987: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal., 98, 123–142.

    • Search Google Scholar
    • Export Citation
  • Morrow, R., F. Birol, D. Griffin, and J. Sudre, 2004: Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophys. Res. Lett., 31, L24311, doi:10.1029/2004GL020974.

    • Search Google Scholar
    • Export Citation
  • Naso, A., P.-H. Chavanis, and B. Dubrulle, 2010: Statistical mechanics of Fofonoff flows in an oceanic basin. Eur. Phys. J., 80B, 493–517.

    • Search Google Scholar
    • Export Citation
  • Nof, D., 1981: On the β-induced movement of isolated baroclinic eddies. J. Phys. Oceanogr., 11, 1662–1672.

  • Olson, D. B., 1991: Rings in the ocean. Annu. Rev. Earth Planet. Sci., 19, 283.

  • Onsager, L., 1949: Statistical hydrodynamics. Nuovo Cimento, 6 (Suppl.), 249–286.

  • Pedlosky, J., 1998: Ocean Circulation Theory. Springer-Verlag, 459 pp.

  • Pierrehumbert, R. T., 1991: Chaotic mixing of tracer and vorticity by modulated travelling Rossby waves. Geophys. Astrophys. Fluid Dyn., 58, 285–319.

    • Search Google Scholar
    • Export Citation
  • Prieto, R., and W. H. Schubert, 2001: Analytical predictions for zonally symmetric equilibrium states of the stratospheric polar vortex. J. Atmos. Sci., 58, 2709–2728.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Young, 1982: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347–367.

  • Ripa, P., 1981: Symmetries and conservation laws for internal gravity waves. American Institute of Physics Conference Proceedings, Vol. 76, American Institute of Physics, 281–306.

    • Search Google Scholar
    • Export Citation
  • Robert, R., 1990: Etats d’equilibre statistique pour l’ecoulement bidimensionnel d’un fluide parfait. C. R. Acad. Sci., 1, 575–578.

    • Search Google Scholar
    • Export Citation
  • Robert, R., 1991: A maximum-entropy principle for two-dimensional perfect fluid dynamics. J. Stat. Phys., 65, 531–553.

  • Robert, R., and J. Sommeria, 1991: Statistical equilibrium states for two-dimensional flows. J. Fluid Mech., 229, 291–310.

  • Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press, 378 pp.

  • Salmon, R., G. Holloway, and M. C. Hendershott, 1976: The equilibrium statistical mechanics of simple quasi-geostrophic models. J. Fluid Mech., 75, 691–703.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and D. H. E. Dubin, 2001: Theory and simulations of two-dimensional vortex motion driven by a background vorticity gradient. Phys. Fluids, 13, 1704–1723.

    • Search Google Scholar
    • Export Citation
  • Turkington, B., 1999: Statistical equilibrium measures and coherent states in two-dimensional turbulence. Commun. Pure Appl. Math., 52, 781–809.

    • Search Google Scholar
    • Export Citation
  • Turkington, B., A. Majda, K. Haven, and M. Dibattista, 2001: Statistical equilibrium predictions of jets and spots on Jupiter. Proc. Natl. Acad. Sci. USA, 98, 12 346–12 350.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Venaille, A., 2008: Mélange et circulation océanique: Une approche par la physique statistique. Ph.D. thesis, Université Joseph Fourier-Grenoble, 252 pp.

    • Search Google Scholar
    • Export Citation
  • Venaille, A., and F. Bouchet, 2009: Statistical ensemble inequivalence and bicritical points for two-dimensional flows and geophysical flows. Phys. Rev. Lett., 102, 104501, doi:10.1103/PhysRevLett.102.104501.

    • Search Google Scholar
    • Export Citation
  • Venaille, A., and F. Bouchet, 2011: Solvable phase diagrams and ensemble inequivalence for two-dimensional and geophysical flows. J. Stat. Phys., 143, 346–380.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and G. K. Vallis, 1994: Emergence of Fofonoff states in inviscid and viscous ocean circulation models. J. Mar. Res., 52, 83–127.

    • Search Google Scholar
    • Export Citation
  • Zou, J., and G. Holloway, 1994: Entropy maximization tendency in topographic turbulence. J. Fluid Mech., 263, 361–374.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 176 68 2
PDF Downloads 85 34 0