On the Connection between Dissipation Enhancement in the Ocean Surface Layer and Langmuir Circulations

Miguel A. C. Teixeira CGUL, IDL, University of Lisbon, Lisbon, Portugal

Search for other papers by Miguel A. C. Teixeira in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A mechanism for the enhancement of the viscous dissipation rate of turbulent kinetic energy (TKE) in the oceanic boundary layer (OBL) is proposed, based on insights gained from rapid-distortion theory (RDT). In this mechanism, which complements mechanisms purely based on wave breaking, preexisting TKE is amplified and subsequently dissipated by the joint action of a mean Eulerian wind-induced shear current and the Stokes drift of surface waves, the same elements thought to be responsible for the generation of Langmuir circulations. Assuming that the TKE dissipation rate ε saturates to its equilibrium value over a time of the order one eddy turnover time of the turbulence, a new scaling expression, dependent on the turbulent Langmuir number, is derived for ε. For reasonable values of the input parameters, the new expression predicts an increase of the dissipation rate near the surface by orders of magnitude compared with usual surface-layer scaling estimates, consistent with available OBL data. These results establish on firmer grounds a suspected connection between two central OBL phenomena: dissipation enhancement and Langmuir circulations.

Corresponding author address: Miguel A. C. Teixeira, CGUL, IDL, University of Lisbon, Edifício C8, Campo Grande, Lisbon, Portugal. E-mail: mateixeira@fc.ul.pt

Abstract

A mechanism for the enhancement of the viscous dissipation rate of turbulent kinetic energy (TKE) in the oceanic boundary layer (OBL) is proposed, based on insights gained from rapid-distortion theory (RDT). In this mechanism, which complements mechanisms purely based on wave breaking, preexisting TKE is amplified and subsequently dissipated by the joint action of a mean Eulerian wind-induced shear current and the Stokes drift of surface waves, the same elements thought to be responsible for the generation of Langmuir circulations. Assuming that the TKE dissipation rate ε saturates to its equilibrium value over a time of the order one eddy turnover time of the turbulence, a new scaling expression, dependent on the turbulent Langmuir number, is derived for ε. For reasonable values of the input parameters, the new expression predicts an increase of the dissipation rate near the surface by orders of magnitude compared with usual surface-layer scaling estimates, consistent with available OBL data. These results establish on firmer grounds a suspected connection between two central OBL phenomena: dissipation enhancement and Langmuir circulations.

Corresponding author address: Miguel A. C. Teixeira, CGUL, IDL, University of Lisbon, Edifício C8, Campo Grande, Lisbon, Portugal. E-mail: mateixeira@fc.ul.pt
Save
  • Agrawal, Y. C., E. A. Terray, M. A. Donelan, P. A. Hwang, A. J. Williams III, W. M. Drennan, K. K. Kahma, and S. A. Kitaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359, 219220.

    • Search Google Scholar
    • Export Citation
  • Anis, A., and J. N. Moum, 1995: Surface wave-turbulence interactions: Scaling ε(z) near the sea surface. J. Phys. Oceanogr., 25, 20252045.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., 1997: Comments on “Estimates of kinetic energy dissipation under breaking waves.” J. Phys. Oceanogr., 27, 23062307.

  • Craig, P. D., and N. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24, 25462559.

    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 2004: Air-Sea Interaction: Laws and Mechanisms. Cambridge University Press, 239 pp.

  • Drennan, W. M., M. A. Donelan, E. A. Terray, and K. B. Katsaros, 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 26, 808815.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1989: Ocean turbulence. Annu. Rev. Fluid Mech., 21, 419451.

  • Gargett, A. E., and J. R. Wells, 2007: Langmuir turbulence in shallow water. Part 1. Observations. J. Fluid Mech., 576, 2761.

  • Gemmrich, J. R., and D. M. Farmer, 2004: Turbulence in the presence of breaking waves. J. Phys. Oceanogr., 34, 10671086.

  • Grant, A. L. M., and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 18711887.

    • Search Google Scholar
    • Export Citation
  • Kondo, J., 1976: Parameterization of turbulent transport in the top meter of the ocean. J. Phys. Oceanogr., 6, 712720.

  • Lee, M. J., J. Kim, and P. Moin, 1990: Structure of turbulence at high shear rate. J. Fluid Mech., 216, 561583.

  • Leibovich, S., 1977: Convective instability of stably stratified water in the ocean. J. Fluid Mech., 82, 561581.

  • Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res., 52, 259278.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130.

  • Melville, W. K., 1996: The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech., 28, 279321.

  • Melville, W. K., R. Shear, and F. Veron, 1998: Laboratory measurements of the generation and evolution of Langmuir circulations. J. Fluid Mech., 364, 3158.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., H. S. Min, and S. Raasch, 2004: Large eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34, 720735.

    • Search Google Scholar
    • Export Citation
  • Polton, J. A., and S. E. Belcher, 2007: Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. J. Geophys. Res., 112, C09020, doi:10.1029/2007JC004205.

    • Search Google Scholar
    • Export Citation
  • Rascle, N., F. Ardhuin, and E. A. Terray, 2006: Drift and mixing under the ocean surface: A coherent one-dimensional description with application to unstratified conditions. J. Geophys. Res., 111, C03016, doi:10.1029/2005JC003004.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. Part 1. Direct numerical simulations. J. Fluid Mech., 507, 143174.

    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., 2011: A linear model for the structure of turbulence beneath surface water waves. Ocean Modell., 36, 149162.

  • Teixeira, M. A. C., and S. E. Belcher, 2002: On the distortion of turbulence by a progressive surface wave. J. Fluid Mech., 458, 229267.

    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., and S. E. Belcher, 2010: On the structure of Langmuir turbulence. Ocean Modell., 31, 105119.

  • Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams III, P. A. Hwang, and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., W. M. Drennan, and M. A. Donelan, 1999: The vertical structure of shear and dissipation in the ocean surface layer. Proc. Symp. on the Wind-Driven Air-Sea Interface–Electromagnetic and Acoustic Sensing, Wave Dynamics and Turbulent Fluxes, Sydney, Australia, University of New South Wales, 239–245.

    • Search Google Scholar
    • Export Citation
  • Thais, L., and J. Magnaudet, 1996: Turbulent structure beneath surface gravity waves sheared by the wind. J. Fluid Mech., 328, 313344.

    • Search Google Scholar
    • Export Citation
  • Townsend, A. A., 1970: Entrainment and the structure of turbulent flow. J. Fluid Mech., 41, 1346.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 33 3
PDF Downloads 64 29 6