On the Nature and Variability of the East Greenland Spill Jet: A Case Study in Summer 2003

M. G. Magaldi Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by M. G. Magaldi in
Current site
Google Scholar
PubMed
Close
,
T. W. N. Haine Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by T. W. N. Haine in
Current site
Google Scholar
PubMed
Close
, and
R. S. Pickart Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by R. S. Pickart in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Results from a high-resolution (~2 km) numerical simulation of the Irminger Basin during summer 2003 are presented. The focus is on the East Greenland Spill Jet, a recently discovered component of the circulation in the basin. The simulation compares well with observations of surface fields, the Denmark Strait overflow (DSO), and the hydrographic structure of typical sections in the basin. The model reveals new aspects of the circulation on scales of O(0.1–10) days and O(1–100) km.

The model Spill Jet results from the cascade of dense waters over the East Greenland shelf. Spilling can occur in various locations southwest of the strait, and it is present throughout the simulation but exhibits large variations on periods of O(0.1–10) days. The Spill Jet sometimes cannot be distinguished in the velocity field from surface eddies or from the DSO. The vorticity structure of the jet confirms its unstable nature with peak relative and tilting vorticity terms reaching twice the planetary vorticity term.

The average model Spill Jet transport is 4.9 ±1.7 Sv (1 Sv ≡ 106 m3 s−1) equatorward, about 2½ times larger than has been previously reported from a single ship transect in August 2001. Kinematic analysis of the model results suggests two different types of spilling events. In the first case (type I), a local perturbation results in dense waters descending over the shelf break into the Irminger Basin. In the second case (type II), surface cyclones associated with DSO deep domes initiate the spilling process. During summer 2003, more than half of the largest Spill Jet transport values are of type II.

Supplemental information related to this paper is available at the Journals Online Web site: http://dx.doi.org/10.1175/JPO-D-10-05004.s1.

Corresponding author address: M. G. Magaldi, Department of Earth and Planetary Sciences, The Johns Hopkins University, Olin Hall, 34th and North Charles Streets, Baltimore, MD 21218. E-mail: marcello.magaldi@jhu.edu

Abstract

Results from a high-resolution (~2 km) numerical simulation of the Irminger Basin during summer 2003 are presented. The focus is on the East Greenland Spill Jet, a recently discovered component of the circulation in the basin. The simulation compares well with observations of surface fields, the Denmark Strait overflow (DSO), and the hydrographic structure of typical sections in the basin. The model reveals new aspects of the circulation on scales of O(0.1–10) days and O(1–100) km.

The model Spill Jet results from the cascade of dense waters over the East Greenland shelf. Spilling can occur in various locations southwest of the strait, and it is present throughout the simulation but exhibits large variations on periods of O(0.1–10) days. The Spill Jet sometimes cannot be distinguished in the velocity field from surface eddies or from the DSO. The vorticity structure of the jet confirms its unstable nature with peak relative and tilting vorticity terms reaching twice the planetary vorticity term.

The average model Spill Jet transport is 4.9 ±1.7 Sv (1 Sv ≡ 106 m3 s−1) equatorward, about 2½ times larger than has been previously reported from a single ship transect in August 2001. Kinematic analysis of the model results suggests two different types of spilling events. In the first case (type I), a local perturbation results in dense waters descending over the shelf break into the Irminger Basin. In the second case (type II), surface cyclones associated with DSO deep domes initiate the spilling process. During summer 2003, more than half of the largest Spill Jet transport values are of type II.

Supplemental information related to this paper is available at the Journals Online Web site: http://dx.doi.org/10.1175/JPO-D-10-05004.s1.

Corresponding author address: M. G. Magaldi, Department of Earth and Planetary Sciences, The Johns Hopkins University, Olin Hall, 34th and North Charles Streets, Baltimore, MD 21218. E-mail: marcello.magaldi@jhu.edu

Supplementary Materials

    • Supplemental Materials (GIF 51.75 MB)
Save
  • Adcroft, A., and J.-M. Campin, 2004: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modell., 7 (3–4), 269284, doi:10.1016/j.ocemod.2003.09.003.

    • Search Google Scholar
    • Export Citation
  • Adcroft, A., C. Hill, and J. Marshall, 1997: Representation of topography by shaved cells in a height coordinate ocean model. Mon. Wea. Rev., 125, 22932315.

    • Search Google Scholar
    • Export Citation
  • Bacon, S., G. Reverdin, I. G. Rigor, and H. M. Snaith, 2002: A freshwater jet on the east Greenland shelf. J. Geophys. Res., 107, 3068, doi:10.1029/2001JC000935.

    • Search Google Scholar
    • Export Citation
  • Bruce, J. G., 1995: Eddies southwest of the Denmark Strait. Deep-Sea Res. I, 42, 1329, doi:10.1016/0967-0637(94)00040-Y.

  • Campin, J.-M., A. Adcroft, C. Hill, and J. Marshall, 2004: Conservation of properties in a free-surface model. Ocean Modell., 6, 221244, doi:10.1016/S1463-5003(03)00009-X.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 15, 10601075.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and Coauthors, 2009: US GODAE global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography, 22, 6475.

    • Search Google Scholar
    • Export Citation
  • Da Silva, A., C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 83 pp.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., and J. Brown, 1994: The production of North Atlantic Deep Water: Sources, rates, and pathways. J. Geophys. Res., 99 (C6), 12 31912 341.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and D. Menemenlis, 2008: Can large eddy simulation techniques improve mesoscale-rich ocean models? Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 319–338.

    • Search Google Scholar
    • Export Citation
  • Griffiths, R. W., 1983: Internal wave drag and the production of intense vortices by turbulent gravity currents, with implications for the sinking of bottom waters. Ocean Modell., 50, 912.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., 2010: High-frequency fluctuations in Denmark Strait transport. Geophys. Res. Lett., 37, L14601, doi:10.1029/2010GL043272.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28, 634658.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., S. Zhang, G. W. K. Moore, and I. A. Renfrew, 2009: On the impact of high-resolution, high-frequency meteorological forcing on Denmark Strait ocean circulation. Quart. J. Roy. Meteor. Soc., 135, 20672085, doi:10.1002/qj.505.

    • Search Google Scholar
    • Export Citation
  • Hall, M. M., 1994: Synthesizing the Gulf Stream thermal structure from XBT data. J. Phys. Oceanogr., 24, 22782287.

  • Harden, B. E., I. A. Renfrew, and G. N. Petersen, 2011: A climatology of wintertime barrier winds off southeast Greenland. J. Climate, 24, 47014714.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1995: Minimal adjustment of hydrostatic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389.

    • Search Google Scholar
    • Export Citation
  • Jakobsson, M., R. Macnab, L. Mayer, R. Anderson, M. Edwards, J. Hatzky, H. W. Schenke, and P. Johnson, 2008: An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys. Res. Lett., 35, L07602, doi:10.1029/2008GL033520.

    • Search Google Scholar
    • Export Citation
  • Jiang, L., and R. W. Garwood, 1996: Three-dimensional simulations of overflows on continental slopes. J. Phys. Oceanogr., 26, 12141233.

    • Search Google Scholar
    • Export Citation
  • Jónsson, S., and J. Briem, 2003: Flow of Atlantic water west of Iceland and onto the north Icelandic shelf. Hydrobiological Variability in the ICES Area, 1990–1999, Vol. 219, ICES Marine Science Symposia, 326–328.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Käse, R. H., J. B. Girton, and T. B. Sanford, 2003: Structure and variability of the Denmark Strait overflow: Model and observations. J. Geophys. Res., 108, 3181, doi:10.1029/2002JC001548.

    • Search Google Scholar
    • Export Citation
  • Krauss, W., 1996: A note on overflow eddies. Deep-Sea Res. I, 43, 16611667, doi:10.1016/S0967-0637(96)00073-8.

  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336.

  • Large, W. G., and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12, 464482.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lea, D. J., T. W. N. Haine, and R. F. Gasparovic, 2006: Observability of the Irminger Sea circulation using variational data assimilation. Quart. J. Roy. Meteor. Soc., 132, 15451576, doi:10.1256/qj.05.77.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1967: Diffusion approximation to inertial energy transfer in isotropic turbulence. Phys. Fluids, 10, 14091416, doi:10.1063/1.1762300.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1996: Stochastic models of chaotic systems. Physica D, 98 (2–4), 481491, doi:10.1016/0167-2789(96)00107-8.

  • Macrander, A., R. H. Käse, U. Send, H. Valdimarsson, and S. Jónsson, 2007: Spatial and temporal structure of the Denmark Strait overflow revealed by acoustic observations. Ocean Dyn., 57, 7589, doi:10.1007/s10236-007-0101-x.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 (C3), 57535766.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., and I. A. Renfrew, 2005: Tip jets and barrier winds: A QuikSCAT climatology of high wind speed events around Greenland. J. Climate, 18, 37133725.

    • Search Google Scholar
    • Export Citation
  • Munk, W., L. Armi, K. Fischer, and F. Zachariasen, 2000: Spirals on the sea. Proc. Roy. Soc. London, 456A, 12171280, doi:10.1098/rspa.2000.0560.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., M. A. Spall, M. H. Ribergaard, G. W. K. Moore, and R. F. D. Milliff, 2003: Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature, 424, 152156, doi:10.1038/nature01729.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., D. J. Torres, and P. S. Fratantoni, 2005: The East Greenland Spill Jet. J. Phys. Oceanogr., 35, 10371053.

  • Renfrew, I. A., G. N. Petersen, D. A. J. Sproson, G. W. K. Moore, H. Adiwidjaja, S. Zhang, and R. North, 2009: A comparison of aircraft-based surface-layer observations over Denmark Strait and the Irminger Sea with meteorological analyses and QuikSCAT winds. Quart. J. Roy. Meteor. Soc., 135, 20462066, doi:10.1002/qj.444.

    • Search Google Scholar
    • Export Citation
  • Ross, C. K., 1977: Overflow-73–Denmark Strait, Vol. 2: Moored instrument time series. Bedford Institute of Oceanography Tech. Rep. Data Series BI-D-77-5, 105 pp.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., E. Fahrbach, J. Meincke, G. Budéus, and P. Eriksson, 2002: The East Greenland Current and its contribution to the Denmark Strait overflow. ICES J. Mar. Sci., 59, 11331154, doi:10.1006/jmsc.2002.1284.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and Coauthors, 2003: A record minimum arctic sea ice extent and area in 2002. Geophys. Res. Lett., 30, 1110, doi:10.1029/2002GL016406.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164.

    • Search Google Scholar
    • Export Citation
  • Smith, P. C., 1976: Baroclinic instability in the Denmark Strait overflow. J. Phys. Oceanogr., 6, 355371.

  • Spall, M. A., and J. F. Price, 1998: Mesoscale variability in Denmark Strait: The PV outflow hypothesis. J. Phys. Oceanogr., 28, 15981623.

    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 20792087.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., R. S. Pickart, and K. Lavender, 2003: Spreading of Labrador Sea Water: An advective-diffusive study based on Lagrangian data. Deep-Sea Res. I, 50, 701719, doi:10.1016/S0967-0637(03)00057-8.

    • Search Google Scholar
    • Export Citation
  • Sutherland, D. A., and R. S. Pickart, 2008: The East Greenland Coastal Current: Structure, variability, and forcing. Prog. Oceanogr., 78, 5877, doi:10.1016/j.pocean.2007.09.006.

    • Search Google Scholar
    • Export Citation
  • Våge, K., R. S. Pickart, G. W. K. Moore, and M. H. Ribergaard, 2008: Winter mixed layer development in the central Irminger Sea: The effect of strong, intermittent wind events. J. Phys. Oceanogr., 38, 541565.

    • Search Google Scholar
    • Export Citation
  • Whitehead, J. A., M. E. Stern, G. R. Flierl, and B. A. Klinger, 1990: Experimental observations of baroclinic eddies on a sloping bottom. J. Geophys. Res., 95 (C6), 95859610.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., M. Bersch, and H. M. van Aken, 2007: Spreading of the Labrador Sea Water to the Irminger and Iceland basins. Geophys. Res. Lett., 34, L10602, doi:10.1029/2006GL028999.

    • Search Google Scholar
    • Export Citation
  • Zhang, H.-M., J. J. Bates, and R. W. Reynolds, 2006: Assessment of composite global sampling: Sea surface wind speed. Geophys. Res. Lett., 33, L17714, doi:10.1029/2006GL027086.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and D. Rothrock, 2000: Modeling Arctic sea ice with an efficient plastic solution. J. Geophys. Res., 105 (C2), 33253338.

  • Zhang, J., R. W. Schmitt, and R. X. Huang, 1999: The relative influence of diapycnal mixing and hydrologic forcing on the stability of the thermohaline circulation. J. Phys. Oceanogr., 29, 10961108.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 640 250 25
PDF Downloads 284 86 2