Dynamically and Observationally Constrained Estimates of Water-Mass Distributions and Ages in the Global Ocean

Tim DeVries Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Tim DeVries in
Current site
Google Scholar
PubMed
Close
and
François Primeau Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by François Primeau in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A data-constrained ocean circulation model is used to characterize the distribution of water masses and their ages in the global ocean. The model is constrained by the time-averaged temperature, salinity, and radiocarbon distributions in the ocean, as well as independent estimates of the mean sea surface height and sea surface heat and freshwater fluxes. The data-constrained model suggests that the interior ocean is ventilated primarily by water masses forming in the Southern Ocean. Southern Ocean waters, including those waters forming in the Antarctic and subantarctic regions, make up about 55% of the interior ocean volume and an even larger percentage of the deep-ocean volume. In the deep North Pacific, the ratio of Southern Ocean to North Atlantic waters is almost 3:1. Approximately 65% of interior ocean waters make first contact with the atmosphere in the Southern Ocean, further emphasizing the central role played by the Southern Ocean in the regulation of the earth’s climate. Results of the age analysis suggest that the mean ventilation age of deep waters is greater than 1000 yr throughout most of the Indian and Pacific Oceans, reaching a maximum of about 1400–1500 yr in the middepth North Pacific. The mean time for deep waters to be reexposed at the surface also reaches a maximum of about 1400–1500 yr in the deep North Pacific. Together these findings suggest that the deep North Pacific can be characterized as a “holding pen” of stagnant and recirculating waters.

Corresponding author address: Tim DeVries, University of California, Los Angeles, Los Angeles, CA 90095. E-mail: tdevries@atmos.ucla.edu

Abstract

A data-constrained ocean circulation model is used to characterize the distribution of water masses and their ages in the global ocean. The model is constrained by the time-averaged temperature, salinity, and radiocarbon distributions in the ocean, as well as independent estimates of the mean sea surface height and sea surface heat and freshwater fluxes. The data-constrained model suggests that the interior ocean is ventilated primarily by water masses forming in the Southern Ocean. Southern Ocean waters, including those waters forming in the Antarctic and subantarctic regions, make up about 55% of the interior ocean volume and an even larger percentage of the deep-ocean volume. In the deep North Pacific, the ratio of Southern Ocean to North Atlantic waters is almost 3:1. Approximately 65% of interior ocean waters make first contact with the atmosphere in the Southern Ocean, further emphasizing the central role played by the Southern Ocean in the regulation of the earth’s climate. Results of the age analysis suggest that the mean ventilation age of deep waters is greater than 1000 yr throughout most of the Indian and Pacific Oceans, reaching a maximum of about 1400–1500 yr in the middepth North Pacific. The mean time for deep waters to be reexposed at the surface also reaches a maximum of about 1400–1500 yr in the deep North Pacific. Together these findings suggest that the deep North Pacific can be characterized as a “holding pen” of stagnant and recirculating waters.

Corresponding author address: Tim DeVries, University of California, Los Angeles, Los Angeles, CA 90095. E-mail: tdevries@atmos.ucla.edu
Save
  • Antonov, J. I., D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov, and H. E. Garcia, 2010: Salinity. Vol. 2, World Ocean Atlas 2009, S. Levitus, Ed., NOAA Atlas NESDIS 69, 184 pp.

    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3. [Available online at http://ams.confex.com/ams/pdfpapers/70720.pdf.]

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1991: The great ocean conveyor. Oceanography, 4, 7989.

  • Broecker, W. S., and Coauthors, 1998: How much deep water is formed in the Southern Ocean? J. Geophys. Res., 103 (C8), 15 83315 843.

  • Bromwich, D. H., R. L. Fogt, K. I. Hodges, and J. E. Walsh, 2007: A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J. Geophys. Res., 112, D10111, doi:10.1029/2006JD007859.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., G. Danabasoglu, P. R. Gent, and K. Lindsay, 2006: Changes in ocean ventilation during the 21st century in the CCSM3. Ocean Modell., 15, 141156.

    • Search Google Scholar
    • Export Citation
  • Deleersnijder, E., J.-M. Campin, and E. J. Delhez, 2001: The concept of age in marine modeling: I. Theory and preliminary model results. J. Mar. Syst., 28, 229267.

    • Search Google Scholar
    • Export Citation
  • DeVries, T., and F. Primeau, 2010: An improved method for estimating water-mass ventilation age from radiocarbon data. Earth Planet. Sci. Lett., 295 (3–4), 367378.

    • Search Google Scholar
    • Export Citation
  • England, M. H., 1995: The age of water and ventilation timescales in a global ocean model. J. Phys. Oceanogr., 25, 27562777.

  • Fofonoff, N. P., and R. J. Millard Jr., 1983: Algorithms for computation of fundamental properties of seawater. Tech. Rep., UNESCO Tech. Paper in Marine Science 44, 58 pp.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453457.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Climate, 16, 696705.

    • Search Google Scholar
    • Export Citation
  • Gebbie, G., and P. Huybers, 2010: Total matrix intercomparison: A method for determining the geometry of water-mass pathways. J. Phys. Oceanogr., 40, 17101728.

    • Search Google Scholar
    • Export Citation
  • Gebbie, G., and P. Huybers, 2012: The mean age of ocean waters inferred from radiocarbon observations: Sensitivity to surface sources and accounting for mixing histories. J. Phys. Oceanogr., in press.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W., and T. M. Hall, 2002: A generalized transport theory: Water-mass composition and age. J. Phys. Oceanogr., 32, 19321946.

    • Search Google Scholar
    • Export Citation
  • Heinkenschloss, M., 2008: Numerical solution of implicitly constrained optimization problems. Rice University Department of Computational and Applied Mathematics Tech. Rep., 22 pp.

    • Search Google Scholar
    • Export Citation
  • Hellmer, H. H., and A. Beckman, 2001: The Southern Ocean: A ventilation contributor with multiple sources. Geophys. Res. Lett., 28, 29272930.

    • Search Google Scholar
    • Export Citation
  • Herzog, H., K. Caldeira, and J. Reilly, 2003: An issue of permanence: Assessing the effectiveness of temporary carbon storage. Climatic Change, 59, 293310.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., and F. Primeau, 2006a: The diffusive ocean conveyor. Geophys. Res. Lett., 33, L14618, doi:10.1029/2006GL026232.

  • Holzer, M., and F. Primeau, 2006b: The path-density distribution of oceanic surface-to-surface transport. J. Geophys. Res., 113, C01018, doi:10.1029/2006JC003976.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., and F. Primeau, 2010: Improved constraints on transit-time distributions from argon 39: A maximum entropy approach. J. Geophys. Res., 115, C12021, doi:10.1029/2010JC006410.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., F. Primeau, W. Smethie, and S. Khatiwala, 2010: Where and how long ago was water in the western North Atlantic ventilated? Maximum entropy inversions of bottle data from WOCE line A20. J. Geophys. Res., 115, C07005, doi:10.1029/2009JC005750.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., 2008: Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes. J. Geophys. Res., 113, C05027, doi:10.1029/2007JC004477.

    • Search Google Scholar
    • Export Citation
  • Key, R. M., and Coauthors, 2004: A global ocean carbon climatology: Results from GLODAP. Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/2004GB002247.

    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., 2007: A computational framework for simulation of biogeochemical tracers in the ocean. Global Biogeochem. Cycles, 21, GB3001, doi:10.1029/2007GB002923.

    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., M. Visbeck, and P. Schlosser, 2001: Age tracers in an ocean GCM. Deep-Sea Res. I, 48, 14231441.

  • Knudsen, P., and C. Tscherning, 2005: Error characteristics of dynamic topography models derived from altimetry and GOCE gravimetry. IAG Scientific Assembly Rep., 6 pp.

    • Search Google Scholar
    • Export Citation
  • Kwon, E. Y., and F. Primeau, 2006: Sensitivity and optimization study of a biogeochemistry ocean model using an implicit solver and in-situ phosphate data. Global Biogeochem. Cycles, 20, GB4009, doi:10.1029/2005GB002631.

    • Search Google Scholar
    • Export Citation
  • Kwon, E. Y., and F. Primeau, 2008: Optimization and sensitivity of a global biogeochemistry ocean model using combined in-situ DIC, alkalinity and phosphate data. J. Geophys. Res., 113, C08011, doi:10.1029/2007JC004520.

    • Search Google Scholar
    • Export Citation
  • Kwon, E. Y., J. L. Sarmiento, J. R. Toggweiler, and T. DeVries, 2011: The control of atmospheric pCO2 by ocean ventilation change: The effect of the oceanic storage of biogenic carbon. Global Biogeochem. Cycles, 25, GB3026, doi:10.1029/2011GB004059.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, J. C. McWilliams, P. R. Gent, and F. O. Bryan, 2001: Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr., 31, 518536.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, S. Levitus, Ed., NOAA Atlas NESDIS 68, 184 pp.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., and D. Stammer, 2004: Vorticity balance in coarse-resolution global ocean simulations. J. Phys. Oceanogr., 34, 605622.

  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562.

  • Marinov, I., A. Gnanadesikan, J. R. Toggweiler, and J. L. Sarmiento, 2006: The Southern Ocean biogeochemical divide. Nature, 441, 964967.

    • Search Google Scholar
    • Export Citation
  • Matsumoto, K., 2007: Radiocarbon-based circulation age of the world oceans. J. Geophys. Res., 112, C09004, doi:10.1029/2007JC004095.

  • Mazloff, M., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899.

  • Menemenlis, D., J.-M. Campin, P. Heimbach, C. Hill, T. Lee, A. Nguyen, M. Schodlock, and H. Zhang, 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, No. 31, Mercator-Ocean, Ramonville Saint-Agne, France, 13–21.

    • Search Google Scholar
    • Export Citation
  • Metz, B., O. Davidson, H. de Coninck, M. Loos, and L. Meyer, Eds., 2005: IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, 432 pp.

    • Search Google Scholar
    • Export Citation
  • Peacock, S., and M. Maltrud, 2006: Transit-time distributions in a global ocean model. J. Phys. Oceanogr., 36, 474495.

  • Primeau, F. W., 2005: Characterizing transport between the surface mixed layer and the ocean interior with a forward and adjoint global ocean transport model. J. Phys. Oceanogr., 35, 545564.

    • Search Google Scholar
    • Export Citation
  • Primeau, F. W., and M. Holzer, 2006: The ocean’s memory of the atmosphere: Residence-time and ventilation-rate distributions of water masses. J. Phys. Oceanogr., 36, 14391456.

    • Search Google Scholar
    • Export Citation
  • Schlitzer, R., 1993: Determining the mean, large-scale circulation of the Atlantic with the adjoint method. J. Phys. Oceanogr., 23, 19351952.

    • Search Google Scholar
    • Export Citation
  • Schlitzer, R., 2000: Applying the adjoint method for global biogeochemical modeling. Inverse Methods in Global Biogeochemical Cycles, Geophys. Monogr., Vol. 114, Amer. Geophys. Union, 107–124.

    • Search Google Scholar
    • Export Citation
  • Schlitzer, R., 2002: Carbon export fluxes in the Southern Ocean: Results from inverse modeling and comparison with satellite based estimates. Deep-Sea Res. II, 49, 16231644.

    • Search Google Scholar
    • Export Citation
  • Schlitzer, R., 2004: Export production in the equatorial and North Pacific derived from dissolved oxygen, nutrient and carbon data. J. Oceanogr., 60, 5362.

    • Search Google Scholar
    • Export Citation
  • Schlitzer, R., 2007: Assimilation of radiocarbon and chlorofluorocarbon data to constrain deep and bottom water transports in the World Ocean. J. Phys. Oceanogr., 37, 259276.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., N. M. Urban, K. Keller, and D. Matthews, 2009: Using tracer observations to reduce the uncertainty of ocean diapycnal mixing and climate–carbon cycle projections. Global Biogeochem. Cycles, 23, GB4009, doi:10.1029/2008GB003421.

    • Search Google Scholar
    • Export Citation
  • Sigman, D. M., M. P. Hain, and G. H. Haug, 2010: The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature, 466, 4755.

    • Search Google Scholar
    • Export Citation
  • Skinner, L. C., S. Fallon, C. Waelbrock, E. Michel, and S. Barker, 2010: Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science, 328, 11471151.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2002: Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res., 107, 3118, doi:10.1029/2001JC000888.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., K. Ueyoshi, A. Köhl, W. G. Large, S. A. Josey, and C. Wunsch, 2004: Estimating air-sea fluxes of heat, freshwater, and momentum through global ocean data assimilation. J. Geophys. Res., 109, C05023, doi:10.1029/2003JC002082.

    • Search Google Scholar
    • Export Citation
  • Strong, A. L., J. J. Cullen, and S. W. Chisholm, 2009: Ocean fertilization: Science, policy, and commerce. Oceanography, 22, 236261.

  • Thiele, G., and J. L. Sarmiento, 1990: Tracer dating and ocean ventilation. J. Geophys. Res., 95 (C6), 93779391.

  • Toggweiler, J. R., 1999: Variation of atmospheric CO2 by ventilation of the ocean’s deepest water. Paleoceanography, 14, 571588.

  • Trenberth, K. E., W. G. Large, and J. G. Olson, 1989: A global ocean wind stress climatology based on ECMWF analyses. National Center for Atmospheric Research Tech. Rep. TN-338+STR, 93 pp.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., 2001: Ocean transport of freshwater. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 475–488.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 437 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3000 1342 94
PDF Downloads 1626 437 51