The Dependence of Southern Ocean Meridional Overturning on Wind Stress

Ryan Abernathey Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Ryan Abernathey in
Current site
Google Scholar
PubMed
Close
,
John Marshall Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by John Marshall in
Current site
Google Scholar
PubMed
Close
, and
David Ferreira Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by David Ferreira in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An eddy-resolving numerical model of a zonal flow, meant to resemble the Antarctic Circumpolar Current, is described and analyzed using the framework of J. Marshall and T. Radko. In addition to wind and buoyancy forcing at the surface, the model contains a sponge layer at the northern boundary that permits a residual meridional overturning circulation (MOC) to exist at depth. The strength of the residual MOC is diagnosed for different strengths of surface wind stress. It is found that the eddy circulation largely compensates for the changes in Ekman circulation. The extent of the compensation and thus the sensitivity of the MOC to the winds depend on the surface boundary condition. A fixed-heat-flux surface boundary severely limits the ability of the MOC to change. An interactive heat flux leads to greater sensitivity. To explain the MOC sensitivity to the wind strength under the interactive heat flux, transformed Eulerian-mean theory is applied, in which the eddy diffusivity plays a central role in determining the eddy response. A scaling theory for the eddy diffusivity, based on the mechanical energy balance, is developed and tested; the average magnitude of the diffusivity is found to be proportional to the square root of the wind stress. The MOC sensitivity to the winds based on this scaling is compared with the true sensitivity diagnosed from the experiments.

Corresponding author address: Ryan Abernathey, 54–1615, Dept. of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139-4307. E-mail: rpa@mit.edu

Abstract

An eddy-resolving numerical model of a zonal flow, meant to resemble the Antarctic Circumpolar Current, is described and analyzed using the framework of J. Marshall and T. Radko. In addition to wind and buoyancy forcing at the surface, the model contains a sponge layer at the northern boundary that permits a residual meridional overturning circulation (MOC) to exist at depth. The strength of the residual MOC is diagnosed for different strengths of surface wind stress. It is found that the eddy circulation largely compensates for the changes in Ekman circulation. The extent of the compensation and thus the sensitivity of the MOC to the winds depend on the surface boundary condition. A fixed-heat-flux surface boundary severely limits the ability of the MOC to change. An interactive heat flux leads to greater sensitivity. To explain the MOC sensitivity to the wind strength under the interactive heat flux, transformed Eulerian-mean theory is applied, in which the eddy diffusivity plays a central role in determining the eddy response. A scaling theory for the eddy diffusivity, based on the mechanical energy balance, is developed and tested; the average magnitude of the diffusivity is found to be proportional to the square root of the wind stress. The MOC sensitivity to the winds based on this scaling is compared with the true sensitivity diagnosed from the experiments.

Corresponding author address: Ryan Abernathey, 54–1615, Dept. of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139-4307. E-mail: rpa@mit.edu
Save
  • Abernathey, R., J. Marshall, E. Shuckburgh, and M. Mazloff, 2010: Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean. J. Phys. Oceanogr., 40, 170185.

    • Search Google Scholar
    • Export Citation
  • Anderson, R. F., S. Ali, L. I. Bradtmiller, S. H. H. Nielsen, M. Q. Fleisher, B. E. Anderson, and L. H. Burckle, 2009: Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science, 323, 11431150.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312058.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysical Series, Vol. 40, Academic Press, 489 pp.

    • Search Google Scholar
    • Export Citation
  • Badin, G., and R. G. Williams, 2010: On the buoyancy forcing and residual circulation in the Southern Ocean: The feedback from Ekman and eddy transfer. J. Phys. Oceanogr., 40, 295311.

    • Search Google Scholar
    • Export Citation
  • Bugnion, V., C. Hill, and P. H. Stone, 2006: An adjoint analysis of the meridional overturning circulation in an ocean model. J. Climate, 19, 37323751.

    • Search Google Scholar
    • Export Citation
  • Cenedese, C., J. Marshall, and J. A. Whitehead, 2004: A laboratory model of thermocline depth and exchange fluxes across circumpolar fronts. J. Phys. Oceanogr., 34, 656668.

    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., R. A. Plumb, and W. Heres, 2009: Eddy transport and mixing in a wind and buoyancy driven jet on the sphere. J. Phys. Oceanogr., 39, 11331149.

    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., L. D. Talley, and M. R. Mazloff, 2011: A comparison of Southern Ocean air–sea buoyancy flux from an ocean state estimate with five other products. J. Climate., 24, 62836306.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., 2008: An energy-constrained parameterization of eddy buoyancy flux. J. Phys. Oceanogr., 38, 18071820.

  • Cessi, P., W. R. Young, and J. A. Polton, 2006: Control of large-scale heat transport by small-scale mixing. J. Phys. Oceanogr., 36, 18771895.

    • Search Google Scholar
    • Export Citation
  • Davis, R., 1991: Observing the general circulation with floats. Deep-Sea Res., 38A, S531S571.

  • de Szoeke, R. A., and M. D. Levine, 1981: The advective flux of heat by mean geostrophic motions in the Southern Ocean. Deep-Sea Res., 28A, 10571085.

    • Search Google Scholar
    • Export Citation
  • Döös, K., and D. Webb, 1994: The Deacon cell and other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24, 429442.

  • Eden, C., and R. Greatbatch, 2008: Diapycnal mixing by meso-scale eddies. Ocean Modell., 23, 113120.

  • Farneti, R., T. L. Delworth, A. J. Rosati, S. M. Griffies, and F. Zeng, 2010: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr., 40, 15391557.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35, 18911910.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453459.

    • Search Google Scholar
    • Export Citation
  • Gent, P., and J. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Gent, P., J. Willebrand, T. McDougal, and J. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463475.

    • Search Google Scholar
    • Export Citation
  • Green, J. S., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96, 157185.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252.

    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1, 241248.

  • Held, I. M., and V. D. Larichev, 1996: A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci., 53, 946953.

    • Search Google Scholar
    • Export Citation
  • Henning, C. C., and G. K. Vallis, 2005: The effects of mesoscale eddies on the stratification and transport of an ocean with a circumpolar channel. J. Phys. Oceanogr., 35, 880897.

    • Search Google Scholar
    • Export Citation
  • Hill, C., D. Ferreira, J.-M. Campin, J. Marshall, R. Abernathey, and N. Barrier, 2011: Controlling spurious diapycnal mixing in eddy-resolving height-coordinate ocean models: Insights from virtual deliberate tracer release experiments. Ocean Modell., in press.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1986: Estimation of oceanic eddy transports from satellite altimetry. Nature, 323, 343344.

  • Hughes, C. W., 1997: Comments on “On the obscurantist physics of ‘form drag’ in theorizing about the circumpolar current.” J. Phys. Oceanogr., 27, 209210.

    • Search Google Scholar
    • Export Citation
  • Hutchinson, D. K., A. M. Hogg, and J. R. Blundell, 2010: Southern Ocean response to relative velocity wind stress forcing. J. Phys. Oceanogr., 40, 326340.

    • Search Google Scholar
    • Export Citation
  • Ito, T., and J. Marshall, 2008: Control of lower-limb overturning circulation in the Southern Ocean by diapycnal mixing and mesoscale eddy transfer. J. Phys. Oceanogr., 38, 28322845.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., K. J. Richards, and D. P. Stevens, 1996: The dynamics of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 26, 753785.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36, 3953.

  • Karsten, R. H., and J. Marshall, 2002a: Testing theories of the vertical stratification of the ACC against observations. Dyn. Atmos. Oceans, 36, 233246.

    • Search Google Scholar
    • Export Citation
  • Karsten, R. H., and J. Marshall, 2002b: Constructing the residual circulation of the ACC from observations. J. Phys. Oceanogr., 32, 33153327.

    • Search Google Scholar
    • Export Citation
  • Karsten, R. H., H. Jones, and J. Marshall, 2002: The role of eddy transfer in setting the stratification and transport of a circumpolar current. J. Phys. Oceanogr., 32, 3954.

    • Search Google Scholar
    • Export Citation
  • Keffer, T., and G. Holloway, 1988: Estimating Southern Ocean eddy flux of heat and salt from satellite altimetry. Nature, 332, 624626.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1997: On the parameterization of eddy transfer: Part I: Theory. J. Mar. Res., 55, 11711197.

  • Kuo, A., R. A. Plumb, and J. Marshall, 2005: Transformed Eulerian-mean theory. Part II: Potential vorticity homogenization and equilibrium of a wind- and buoyancy-driven zonal flow. J. Phys. Oceanogr., 35, 175187.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and I. M. Held, 2003: Diffusivity, kinetic energy dissipation, and closure theories for the poleward eddy heat flux. J. Atmos. Sci., 60, 29072917.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33 (2–3), 341364.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global meridional overturning. J. Phys. Oceanogr., 37, 25502562.

  • Marshall, D., 1997: Subduction of water masses in an eddying ocean. J. Mar. Res., 55, 201222.

  • Marshall, G., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344144.

  • Marshall, J., 1981: On the parameterization of geostrophic eddies in the ocean. J. Phys. Oceanogr., 11, 12571271.

  • Marshall, J., and T. Radko, 2003: Residual mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2006: A model of the upper branch of the meridional overturning of the Southern Ocean. Prog. Oceanogr., 70, 331345.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2011: Closing the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., in press.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hysdrostatic, and non-hydrostatic ocean modeling. J. Geophys. Res., 102, 57335752.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., E. Shuckburgh, H. Jones, and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36, 18061821.

    • Search Google Scholar
    • Export Citation
  • McCarthy, M. C., and L. D. Talley, 1999: Three-dimensional isoneutral potential vorticity structure in the Indian Ocean. J. Geophys. Res., 104 (C6), 13 25113 267.

    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., 1977: Subantarctic mode water. A Voyage of Discovery, George Deacon 70th Anniversary Volume, M. V. Angel, Ed., Pergamon, 103–119.

    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., and T. J. McDougall, 1996: Isopycnal averaging and the residual mean circulations. J. Phys. Oceanogr., 26, 16551661.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., W. R. Holland, and J. H. S. Chow, 1978: A description of numerical Antarctic Circumpolar Currents. Dyn. Atmos. Oceans, 2, 213291.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the southern annular mode. Geophys. Res. Lett., 33, L16608, doi:10.1029/2006GL026499.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and E. Palmén, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3, 5355.

  • Naveira Garabato, A., R. Ferrari, and K. Polzin, 2011: Eddy stirring in the Southern Ocean. J. Geophys. Res., 116, C09019, doi:10.1029/2010JC006818.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., 1998: Comments on “On the obscurantist physics of ‘form drag’ in theorizing about the circumpolar current.” J. Phys. Oceanogr., 28, 16471655.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., D. Borowski, C. Voelker, and J. Wolff, 2004: The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci., 16, 439470.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35, 165174.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812.

    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1925: Bericht untersuchungen zur ausgebildeten turbulenz. Z. Angew. Math. Mech., 5, 136139.

  • Prather, M. J., 1986: Numerical advection by conservation of second-order moments. J. Geophys. Res., 91 (D6), 66716681.

  • Rintoul, S., C. Hughes, and D. Olbers, 2001: The Antarctic Circumpolar Current system. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 171–302.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and J. Marshall, 2009: Evidence for enhanced eddy mixing at mid-depth in the Southern Ocean. J. Phys. Oceanogr., 39, 5069.

    • Search Google Scholar
    • Export Citation
  • Speer, K., S. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30, 32123223.

  • Stammer, D., 1998: On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr., 28, 727739.

  • Stone, P. H., 1972: A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci., 29, 405417.

    • Search Google Scholar
    • Export Citation
  • Straub, D., 1993: On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 23, 776783.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2008: Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Prog. Oceanogr., 78, 257303.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1921: Diffusion by continuous movements. Proc. London Math. Soc., S2-20, 196212.

  • Thompson, A. F., 2008: The atmospheric ocean: Eddies and jets in the Antarctic Circumpolar Current. Philos. Trans. Roy. Soc. London, 366A, 45294541.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and W. R. Young, 2007: Two-layer baroclinic eddy heat fluxes: Zonal flows and energy balance. J. Atmos. Sci., 64, 32143232.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., 2009: Shifting westerlies. Science, 232, 14341435.

  • Toggweiler, J. R., and B. Samuels, 1998: On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr., 28, 18321853.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and J. Russell, 2008: Ocean circulation in a warming climate. Nature, 451, 286288.

  • Treguier, A. M., I. Held, and V. Larichev, 1997: Parameterization of quasigeostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr., 27, 567580.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., J. Le Sommer, and J. M. Molines, 2010: Response of the Southern Ocean to the southern annular mode: Interannual variability and multidecadal trend. J. Phys. Oceanogr., 40, 16591668.

    • Search Google Scholar
    • Export Citation
  • Viebahn, J., and C. Eden, 2010: Toward the impact of eddies on the response of the Southern Ocean to climate change. Ocean Modell., 34, 150165.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, and T. Haine, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381403.

    • Search Google Scholar
    • Export Citation
  • Watson, A. J., and A. C. Naveira Garabato, 2006: The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change. Tellus, 58B, 7387.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2009: Overturning circulation in an eddy-resolving model: The effect of the pole-to-pole temperature gradient. J. Phys. Oceanogr., 39, 125143.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2010: What sets the strength of the mid-depth stratification and overturning circulation in eddying ocean models? J. Phys. Oceanogr., 40, 15201538.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2011: The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr., 41, 17951810.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2217 800 51
PDF Downloads 1566 433 26