Observations of Wind Wave Development in Mixed Seas and Unsteady Wind Forcing

Paul A. Hwang Remote Sensing Division, Naval Research Laboratory, Washington, D.C.

Search for other papers by Paul A. Hwang in
Current site
Google Scholar
PubMed
Close
,
Héctor García-Nava Departamento de Oceanografía Física, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico

Search for other papers by Héctor García-Nava in
Current site
Google Scholar
PubMed
Close
, and
Francisco J. Ocampo-Torres Departamento de Oceanografía Física, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico

Search for other papers by Francisco J. Ocampo-Torres in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Theoretical study and experimental verification of wind wave generation and evolution focus generally on ideal conditions of steady state and quiescent initial background, of which the ideal fetch-limited wind wave growth is an important benchmark. In nature, unsteady winds and swell presence are more common. Here, the observations of wind wave development in mixed seas under unsteady and quasi-steady wind forcing are presented. With reference to the ideal fetch-limited growth functions established under steady wind forcing in the absence of swell, the analysis shows that the wind-steadiness factor impacts wave growth. The wind wave variance in mixed sea is enhanced in both accelerating and decelerating phases of an unsteady wind event, with a larger enhancement in the accelerating phase than in the decelerating phase. Spatial and temporal wind wave measurements under similar environmental conditions are also compared; the quantifiable differences in the wave development are attributable to the wind-steadiness factor. Coupled with the empirical observation that the average wind stress is decreased in mixed sea, these results suggest that wind wave generation and development are more efficient in mixed sea than in wind sea. Possible causes include (i) oscillatory modulation of surface roughness increases air–sea exchanges, (ii) background surface motion reduces energy waste for cold start of wind wave generation from a quiescent state, and (iii) breaking of short waves redistributes wind input and allows more of the available wind power to be directed to the longer waves for their continuous growth.

Naval Research Laboratory Contribution Number JA/7260-11-0061.

Corresponding author address: Dr. Paul A. Hwang, Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375. E-mail: paul.hwang@nrl.navy.mil

Abstract

Theoretical study and experimental verification of wind wave generation and evolution focus generally on ideal conditions of steady state and quiescent initial background, of which the ideal fetch-limited wind wave growth is an important benchmark. In nature, unsteady winds and swell presence are more common. Here, the observations of wind wave development in mixed seas under unsteady and quasi-steady wind forcing are presented. With reference to the ideal fetch-limited growth functions established under steady wind forcing in the absence of swell, the analysis shows that the wind-steadiness factor impacts wave growth. The wind wave variance in mixed sea is enhanced in both accelerating and decelerating phases of an unsteady wind event, with a larger enhancement in the accelerating phase than in the decelerating phase. Spatial and temporal wind wave measurements under similar environmental conditions are also compared; the quantifiable differences in the wave development are attributable to the wind-steadiness factor. Coupled with the empirical observation that the average wind stress is decreased in mixed sea, these results suggest that wind wave generation and development are more efficient in mixed sea than in wind sea. Possible causes include (i) oscillatory modulation of surface roughness increases air–sea exchanges, (ii) background surface motion reduces energy waste for cold start of wind wave generation from a quiescent state, and (iii) breaking of short waves redistributes wind input and allows more of the available wind power to be directed to the longer waves for their continuous growth.

Naval Research Laboratory Contribution Number JA/7260-11-0061.

Corresponding author address: Dr. Paul A. Hwang, Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375. E-mail: paul.hwang@nrl.navy.mil
Save
  • Anctil, F., and M. A. Donelan, 1996: Air–water momentum flux observed over shoaling waves. J. Phys. Oceanogr., 26, 13441353.

  • Ardhuin, F., T. H. C. Herbers, G. P. van Vledder, K. P. Watts, R. Jensen, and H. C. Grabber, 2007: Swell and slanting-fetch effects on wind wave growth. J. Phys. Oceanogr., 37, 908931.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., and Y. P. Soloviev, 1998: Field investigation of transformation of the wind wave frequency spectrum with fetch and the stage of development. J. Phys. Oceanogr., 28, 563576.

    • Search Google Scholar
    • Export Citation
  • Burling, R. W., 1959: The spectrum of waves at short fetches. Dtsch. Hydrogr. Z., 12, 96117.

  • Dobson, F., W. Perrie, and B. Toulany, 1989: On the deep-water fetch laws for wind-generated surface gravity waves. Atmos.–Ocean, 27, 210236.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1979: On the fraction of wind momentum retained by waves. Marine Forecasting, J. C. J. Nihoul, Ed., Elsevier, 141–159.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1990: Air–sea interaction. The Sea, B. LeMehaute and D. M. Hanes, Eds., Ocean Engineering Science, Vol. 9, Wiley and Sons, 239–292.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., and W. J. Pierson, 1987: Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92, 49715029.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, 315A, 509562.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., W. M. Drennan, and A. K. Magnusson, 1996: Nonstationary analysis of the directional properties of propagating waves. J. Phys. Oceanogr., 26, 19011914.

    • Search Google Scholar
    • Export Citation
  • Friehe, C. A., D. Khelif, and W. K. Melville, 2006: Aircraft air–sea flux measurements in the Gulf of Tehuantepec. Preprints, 14th Conf. on Interaction of the Sea and Atmosphere, Atlanta, GA, Amer. Meteor. Soc., 7.2.

    • Search Google Scholar
    • Export Citation
  • García-Nava, H., F. J. Ocampo-Torres, P. Osuna, and M. A. Donelan, 2009: Wind stress in the presence of swell under moderate to strong wind conditions. J. Geophys. Res., 114, C12008, doi:10.1029/2009JC005389.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., 1977: A numerical model of the air flow above water waves. Part 2. J. Fluid Mech., 82, 349369.

  • Gent, P. R., and P. A. Taylor, 1976: A numerical model of the air flow above water waves. J. Fluid Mech., 77, 105128.

  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutsch. Hydrogr. Z., A8 (Suppl.), 195.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2004: Influence of wavelength on the parameterization of drag coefficient and surface roughness. J. Oceanogr., 60, 835841.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2005a: Comparison of the ocean surface wind stress computed with different parameterization functions of the drag coefficient. J. Oceanogr., 61, 91107.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2005b: Drag coefficient, dynamic roughness and reference wind speed. J. Oceanogr., 61, 399413.

  • Hwang, P. A., 2006: Duration- and fetch-limited growth functions of wind-generated waves parameterized with three different scaling wind velocities. J. Geophys. Res., 111, C02005, doi:10.1029/2005JC003180.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2009: Estimating the effective energy transfer velocity at air-sea interface. J. Geophys. Res., 114, C11011, doi:10.1029/2009JC005497.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and O. H. Shemdin, 1990: Modulation of short waves by surface currents—A numerical solution. J. Geophys. Res., 95, 16 31116 318.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and D. W. Wang, 2004: Field measurements of duration limited growth of wind-generated ocean surface waves at young stage of development. J. Phys. Oceanogr., 34, 23162326; Corrigendum, 35, 268–270.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., D. W. Wang, E. J. Walsh, W. B. Krabill, and R. N. Swift, 2000: Airborne measurements of the directional wavenumber spectra of ocean surface waves. Part I: Spectral slope and dimensionless spectral coefficient. J. Phys. Oceanogr., 30, 27532767.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., H. García-Nava, and F. J. Ocampo-Torres, 2011: Dimensionally consistent similarity relation of ocean surface friction coefficient in mixed seas. J. Phys. Oceanogr., 41, 12271238.

    • Search Google Scholar
    • Export Citation
  • Janssen, J. A. M., 1997: Does wind stress depend on sea-state or not?—A statistical error analysis of HEXMAX data. Bound.-Layer Meteor., 83, 479503.

    • Search Google Scholar
    • Export Citation
  • Janssen, P., 2004: The Interaction of Ocean Waves and Wind. Cambridge University Press, 300 pp.

  • Janssen, P. A. E. M., K. Hasselmann, S. Hasselmann, G. J. Komen, H. Günther, and L. Zambresky, 1994: Numerical modelling of wave evolution. Dynamics and Modeling of Ocean Waves, G. J. Komen et al., Eds., Cambridge University Press, 205–257.

    • Search Google Scholar
    • Export Citation
  • Kahma, K. K., and C. J. Calkoen, 1992: Reconciling discrepancies in the observed growth of wind-generated waves. J. Phys. Oceanogr., 22, 13891405.

    • Search Google Scholar
    • Export Citation
  • Kahma, K. K., and C. J. Calkoen, 1994: Growth curve observations. Dynamics and Modeling of Ocean Waves, G. J. Komen et al., Eds., Cambridge University Press, 174–182.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., K. Hasselmann, and S. Hasselmann, 1984: On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14, 12711285.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, Eds., 1994: Dynamics and Modeling of Ocean Waves. Cambridge University Press, 532 pp.

    • Search Google Scholar
    • Export Citation
  • Merzi, N., and W. H. Graf, 1985: Evaluation of the drag coefficient considering the effects of mobility of the roughness elements. Ann. Geophys., 3, 473478.

    • Search Google Scholar
    • Export Citation
  • Ocampo-Torres, F. J., H. García-Nava, R. Durazo, P. Osuna, G. M. Díaz Méndez, and H. C. Graber, 2011: The INTOA experiment: A study of ocean-atmosphere interactions under moderate to strong offshore winds and opposing swell conditions in the Gulf of Tehuantepec, Mexico. Bound.-Layer Meteor., 138, 433451, doi:10.1007/s10546-010-9561-5.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean. 2nd ed. Cambridge University Press, 366 pp.

  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 2009: The ocean wave height variance spectrum: Wavenumber peak versus frequency peak. J. Phys. Oceanogr., 39, 23822383.

    • Search Google Scholar
    • Export Citation
  • Romero, L., and W. K. Melville, 2010a: Airborne observations of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr., 40, 441465.

    • Search Google Scholar
    • Export Citation
  • Romero, L., and W. K. Melville, 2010b: Numerical modeling of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr., 40, 466486.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams, P. A. Hwang, and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1999: Wind Generated Ocean Waves. Elsevier, 288 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 545 214 24
PDF Downloads 304 93 12