• Adcroft, A., , C. Hill, , J. Campin, , J. Marshall, , and P. Heimbach, 2004: Overview of the formulation and numerics of the MIT GCM. Proc. ECMWF Seminar Series on Numerical Methods: Recent Developments in Numerical Methods for Atmosphere and Ocean Modelling, Reading, United Kingdom, ECMWF, 139–149. [Available online at http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf].

    • Search Google Scholar
    • Export Citation
  • Fairall, C., , E. Bradley, , J. Hare, , A. Grachev, , and J. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Forget, G., 2010: Mapping ocean observations in a dynamical framework: A 2004–06 ocean atlas. J. Phys. Oceanogr., 40 , 12011221.

  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Hanawa, K., , and L. Talley, 2001: Mode waters. Ocean Circulation and Climate, J. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 373–386.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y., , and S. Riser, 2004: North Atlantic subtropical mode water: A history of ocean-atmosphere interaction 1961–2000. Geophys. Res. Lett., 31 , L19307. doi:10.1029/2004GL021116.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , and S. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Rep. TN-460+STR, 112 pp.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403. , doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , A. Adcroft, , C. Hill, , L. Perelman, , and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 , (C3). 57535766.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , D. Jamous, , and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res., 46 , 545572.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2009: The Climode field campaign: Observing the cycle of convection and restratification over the Gulf Stream. Bull. Amer. Meteor. Soc., 90 , 13371350.

    • Search Google Scholar
    • Export Citation
  • Maze, G., , G. Forget, , M. Buckley, , J. Marshall, , and I. Cerovecki, 2009: Using transformation and formation maps to study the role of air–sea heat fluxes in North Atlantic Eighteen Degree Water formation. J. Phys. Oceanogr., 39 , 18181835.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R., , and T. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Siedler, G., , A. Kuhl, , and W. Zenk, 1987: The Madeira Mode Water. J. Phys. Oceanogr., 17 , 15611570.

  • Speer, K., , and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr., 22 , 93104.

  • Stammer, D., and Coauthors, 2002: The global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res., 107 , 3118. doi:10.1029/2001JC000888.

    • Search Google Scholar
    • Export Citation
  • Trossman, D., , L. Thompson, , K. Kelly, , and Y. Kwon, 2009: Estimates of North Atlantic ventilation and mode water formation for winters 2002–06. J. Phys. Oceanogr., 39 , 26002617.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34 , 187195.

  • Worthington, L., 1959: The 18° water in the Sargasso Sea. Deep-Sea Res., 5 , 297305.

  • Worthington, L., 1976: On the North Atlantic Circulation. Johns Hopkins University Press, 110 pp.

  • Wunsch, C., , and P. Heimbach, 2007: Practical global oceanic state estimation. Physica D, 230 , 197208.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 70 70 7
PDF Downloads 51 51 8

Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume

View More View Less
  • 1 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The seasonal cycle in the volume and formation rate of Eighteen Degree Water (EDW) in the North Atlantic is quantified over the 3-yr period from 2004 to 2006. The EDW layer is defined as all waters that have a temperature between 17° and 19°C. The study is facilitated by a synthesis of various observations—principally Argo profiles of temperature and salinity, sea surface temperature, and altimetry—using a general circulation model as an interpolation tool. The winter increase in EDW volume is most pronounced in February, peaking at about 8.6 Svy, where 1 Svy ≈ 3.15 × 1013 m3 corresponding to a 1 Sv (Sv ≡ 106 m3 s−1) flow sustained for one year. This largely reflects winter EDW formation due to air–sea heat fluxes. Over the remainder of the year, newly created EDW is consumed by air–sea heat fluxes and ocean mixing, which roughly contribute ⅔ and ⅓, respectively. The authors estimate a net annual volume increase of 1.4 Svy, averaged over the 3-yr period. It is small compared to the amplitude of the seasonal cycle (8.6 Svy) and annual formation due to air–sea fluxes (4.6 Svy). The overall EDW layer volume thus appears to fluctuate around a stable point during the study period. An estimate of the full EDW volume budget is provided along with an uncertainty estimate of 1.8 Svy, and largely resolves apparent conflicts between previous estimates.

Corresponding author address: Gaël Forget, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139. Email: gforget@mit.edu

Abstract

The seasonal cycle in the volume and formation rate of Eighteen Degree Water (EDW) in the North Atlantic is quantified over the 3-yr period from 2004 to 2006. The EDW layer is defined as all waters that have a temperature between 17° and 19°C. The study is facilitated by a synthesis of various observations—principally Argo profiles of temperature and salinity, sea surface temperature, and altimetry—using a general circulation model as an interpolation tool. The winter increase in EDW volume is most pronounced in February, peaking at about 8.6 Svy, where 1 Svy ≈ 3.15 × 1013 m3 corresponding to a 1 Sv (Sv ≡ 106 m3 s−1) flow sustained for one year. This largely reflects winter EDW formation due to air–sea heat fluxes. Over the remainder of the year, newly created EDW is consumed by air–sea heat fluxes and ocean mixing, which roughly contribute ⅔ and ⅓, respectively. The authors estimate a net annual volume increase of 1.4 Svy, averaged over the 3-yr period. It is small compared to the amplitude of the seasonal cycle (8.6 Svy) and annual formation due to air–sea fluxes (4.6 Svy). The overall EDW layer volume thus appears to fluctuate around a stable point during the study period. An estimate of the full EDW volume budget is provided along with an uncertainty estimate of 1.8 Svy, and largely resolves apparent conflicts between previous estimates.

Corresponding author address: Gaël Forget, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139. Email: gforget@mit.edu

Save