• Armi, L., 1978: Some evidence for boundary mixing in the deep ocean. J. Geophys. Res., 83 , (C4). 19711979.

  • Armi, L., 1979a: Effects of variations in eddy diffusivity on property distributions in the oceans. J. Mar. Res., 37 , 515530.

  • Armi, L., 1979b: Reply to comments by C. Garrett. J. Geophys. Res., 84 , (C8). 50975098.

  • Arneborg, L., , V. Fiekas, , L. Umlauf, , and H. Burchard, 2007: Gravity current dynamics and entrainment: A process study based on observations in the Arkona Basin. J. Phys. Oceanogr., 37 , 20942113.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., , E. Deleersnijder, , and G. Stoyan, 2005: Some numerical aspects of turbulence-closure models. Marine Turbulence: Theories, Observations and Models, H. Z. Baumert, J. H. Simpson, and J. Sündermann, Eds., Cambridge University Press, 197–206.

    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., , A. Howard, , Y. Cheng, , and M. S. Dubovikov, 2001: Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities. J. Phys. Oceanogr., 31 , 14131426.

    • Search Google Scholar
    • Export Citation
  • Durski, S. M., , S. M. Glenn, , and D. B. Haidvogel, 2004: Vertical mixing schemes in the coastal ocean: Comparison of the level 2.5 Mellor-Yamada scheme with an enhanced version of the K profile parameterisation. J. Geophys. Res., 109 , C01015. doi:10.1029/2002JC001702.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., , L. H. Kantha, , S. Hassid, , and A. Rosati, 1988: A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci., 45 , 5562.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1979: Comment on ‘Some evidence for boundary mixing in the deep ocean’ by Laurence Armi. J. Geophys. Res., 84 , (C8). 5095.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1990: The role of secondary circulation in boundary mixing. J. Geophys. Res., 95 , (C3). 31813188.

  • Garrett, C., 1991: Marginal mixing theories. Atmos.—Ocean, 29 , 313339.

  • Garrett, C., 2001: An isopycnal view of near-boundary mixing and associated flows. J. Phys. Oceanogr., 31 , 138142.

  • Garrett, C., , P. MacCready, , and P. Rhines, 1993: Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping bottom. Annu. Rev. Fluid Mech., 25 , 291323.

    • Search Google Scholar
    • Export Citation
  • Gloor, M., , A. Wüest, , and D. M. Imboden, 2000: Dynamics of mixed bottom layers and its implications for diapycnal transport in a stratified, natural water basin. J. Geophys. Res., 105 , (C5). 86298646.

    • Search Google Scholar
    • Export Citation
  • Goudsmit, G-H., , F. Peeters, , M. Gloor, , and A. Wüest, 1997: Boundary versus internal diapycnal mixing in stratified natural waters. J. Geophys. Res., 102 , (C13). 2790327914.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1987: Diapycnal mixing in the thermocline: A review. J. Geophys. Res., 92 , (C5). 52495286.

  • Gregg, M. C., 1999: Uncertainties and limitations in measuring ϵ and χt. J. Atmos. Oceanic Technol., 16 , 14831490.

  • Klymak, J. M., , R. Pinkel, , and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38 , 380399.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterisation. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., , and A. Bratkovich, 1995: A tracer study of mixing in the Santa Cruz Basin. J. Geophys. Res., 100 , 2068120704.

  • Ledwell, J. R., , and B. M. Hickey, 1995: Evidence for enhanced boundary mixing in the Santa Monica Basin. J. Geophys. Res., 100 , 2066520679.

    • Search Google Scholar
    • Export Citation
  • Lemckert, C. J., , J. P. Antenucci, , A. Saggio, , and J. Imberger, 2004: Physical properties of turbulent benthic boundary layers generated by internal waves. J. Hydraul. Eng., 130 , 5869.

    • Search Google Scholar
    • Export Citation
  • Lorke, A., , F. Peeters, , and A. Wüest, 2005: Shear-induced convective mixing in bottom boundary layers on slopes. Limnol. Oceanogr., 50 , 16121619.

    • Search Google Scholar
    • Export Citation
  • Lorke, A., , V. Mohrholz, , and L. Umlauf, 2008: Stratification and mixing on sloping boundaries. Geophys. Res. Lett., 35 , L14610. doi:10.1029/2008GL034607.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., , and T. D. Mudge, 1997: Topographically induced mixing around a shallow seamount. Science, 276 , 18311833.

  • Lueck, R. G., , F. Wolk, , and H. Yamazaki, 2002: Oceanic velocity microstructure measurements in the 20th century. J. Oceanogr., 58 , 153174.

    • Search Google Scholar
    • Export Citation
  • Luketina, D. A., , and J. Imberger, 2001: Determining turbulent kinetic energy dissipation from Batchelor curve fitting. J. Atmos. Oceanic Technol., 18 , 100113.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1989: Dianeutral advection. Parameterization of Small-Scale Processes: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 289–315.

    • Search Google Scholar
    • Export Citation
  • Mellor, G., 2002: Oscillatory bottom boundary layers. J. Phys. Oceanogr., 32 , 30753088.

  • Mellor, G., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Middleton, J. F., , and D. Ramsden, 1996: The evolution of the bottom boundary layer on the sloping continental shelf: A numerical study. J. Geophys. Res., 101 , (C8). 1806118077.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res., 13 , 207230.

  • Nash, J. D., , M. H. Alford, , E. Kunze, , K. Martini, , and S. Kelly, 2007: Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett., 34 , L01605. doi:10.1029/2006GL028170.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., , and C. S. Cox, 1972: Oceanic fine structure. Geophys. Fluid Dyn., 3 , 321345.

  • Pacanowsci, R. C., , and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11 , 14431451.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1970: On flows induced by diffusion in a stably stratified fluid. Deep-Sea Res., 17 , 435443.

  • Phillips, O. M., , J-H. Shyu, , and H. Salmun, 1986: An experiment on boundary mixing: Mean circulation and transport rates. J. Fluid Mech., 173 , 473499.

    • Search Google Scholar
    • Export Citation
  • Ramsden, D., 1995a: Response of an oceanic bottom boundary layer on a slope to interior flow. Part I: Time-independent interior flow. J. Phys. Oceanogr., 25 , 16721687.

    • Search Google Scholar
    • Export Citation
  • Ramsden, D., 1995b: Response of an oceanic bottom boundary layer on a slope to interior flow. Part II: Time-dependent interior flow. J. Phys. Oceanogr., 25 , 16881695.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301 , 355357.

  • Shih, L. H., , J. R. Koseff, , G. N. Ivey, , and J. H. Ferziger, 2005: Parameterization of turbulent fluxes and scales using homogenous sheared stably stratified turbulence simulations. J. Fluid Mech., 525 , 193214.

    • Search Google Scholar
    • Export Citation
  • Slinn, D. N., , and M. D. Levine, 1997: Modeling internal tides and mixing over ocean ridges. Near-Boundary Processes and Their Parameterization: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 59–68.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., , and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 300 pp.

  • Thorpe, S. A., 1987: Current and temperature variability on the continental slope. Philos. Trans. Roy. Soc. London, 323A , 471517.

  • Thorpe, S. A., 2005: The Turbulent Ocean. Cambridge University Press, 439 pp.

  • Thorpe, S. A., , and L. Umlauf, 2002: Internal gravity wave frequencies and wavenumbers from single point measurements over a slope. J. Mar. Res., 60 , 699723.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., , R. W. Schmitt, , K. L. Polzin, , and E. Kunze, 1997: Near-boundary mixing above the flanks of a midlatitude seamount. J. Geophys. Res., 102 , 947959. doi:10.1029/96JC03160.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., 2009: A note on the description of mixing in stratified layers without shear in large-scale ocean models. J. Phys. Oceanogr., 39 , 30323039.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., , and H. Burchard, 2005: Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Cont. Shelf Res., 25 , 795827.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., , H. Burchard, , and K. Bolding, 2005: GOTM—Scientific documentation. Version 3.2, Leibniz-Institute for Baltic Sea Research Marine Science Rep. 63, 274 pp. [Available online at http://www.gotm.net].

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., , L. Arneborg, , R. Hofmeister, , and H. Burchard, 2010: Entrainment in shallow rotating gravity currents: A modeling study. J. Phys. Oceanogr., 40 , 18191834.

    • Search Google Scholar
    • Export Citation
  • Wain, D. J., , and C. R. Rehmann, 2010: Transport by an intrusion generated by boundary mixing in a lake. Water Resour. Res., 46 , W08517. doi:10.1029/2009WR008391.

    • Search Google Scholar
    • Export Citation
  • Weatherly, G. L., , and P. J. Martin, 1978: On the structure and dynamics of the oceanic bottom boundary layer. J. Phys. Oceanogr., 8 , 557570.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., , P. N. Lombard, , J. J. Riley, , and E. A. D’Asaro, 1995: Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289 , 115128.

    • Search Google Scholar
    • Export Citation
  • Wüest, A., , and A. Lorke, 2003: Small-scale hydrodynamics in lakes. Annu. Rev. Fluid Mech., 35 , 373412. doi:10.1146/annurev.fluid.35.101101.161220.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1970: On oceanic boundary mixing. Deep-Sea Res., 17 , 293301.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 89 89 16
PDF Downloads 60 60 17

Diapycnal Transport and Mixing Efficiency in Stratified Boundary Layers near Sloping Topography

View More View Less
  • 1 Leibniz-Institute for Baltic Sea Research, Warnemünde, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The interaction of shear, stratification, and turbulence in boundary layers on sloping topography is investigated with the help of an idealized theoretical model, assuming uniform bottom slope and homogeneity in the upslope direction. It is shown theoretically that the irreversible vertical buoyancy flux generated in the boundary layer is directly proportional to the molecular destruction rate of small-scale buoyancy variance, which can be inferred, for example, from microstructure observations. Dimensional analysis of the equations shows that, for harmonic boundary layer forcing and no rotation, the problem is governed by three nondimensional parameters (slope angle, roughness number, and ratio of forcing and buoyancy frequencies). Solution of the equations with a second-moment closure model for the turbulent fluxes reveals the periodic generation of gravitationally unstable boundary layers during upslope flow, consistent with available observations. Investigation of the nondimensional parameter space with the help of this model illustrates a systematic increase of the bulk mixing efficiencies for (i) steep slopes and (ii) low-frequency forcing. Except for very steep slopes, mixing efficiencies are substantially smaller than the classical value of Γ = 0.2.

Corresponding author address: Lars Umlauf, Leibniz-Institute for Baltic Sea Research, Seestrasse 15, 18119 Warnemünde, Germany. Email: lars.umlauf@io-warnemuende.de

Abstract

The interaction of shear, stratification, and turbulence in boundary layers on sloping topography is investigated with the help of an idealized theoretical model, assuming uniform bottom slope and homogeneity in the upslope direction. It is shown theoretically that the irreversible vertical buoyancy flux generated in the boundary layer is directly proportional to the molecular destruction rate of small-scale buoyancy variance, which can be inferred, for example, from microstructure observations. Dimensional analysis of the equations shows that, for harmonic boundary layer forcing and no rotation, the problem is governed by three nondimensional parameters (slope angle, roughness number, and ratio of forcing and buoyancy frequencies). Solution of the equations with a second-moment closure model for the turbulent fluxes reveals the periodic generation of gravitationally unstable boundary layers during upslope flow, consistent with available observations. Investigation of the nondimensional parameter space with the help of this model illustrates a systematic increase of the bulk mixing efficiencies for (i) steep slopes and (ii) low-frequency forcing. Except for very steep slopes, mixing efficiencies are substantially smaller than the classical value of Γ = 0.2.

Corresponding author address: Lars Umlauf, Leibniz-Institute for Baltic Sea Research, Seestrasse 15, 18119 Warnemünde, Germany. Email: lars.umlauf@io-warnemuende.de

Save