• Alford, M. H., , J. A. MacKinnon, , Z. Zhao, , R. Pinkel, , J. Klymak, , and T. Peacock, 2007: Internal waves across the Pacific. Geophys. Res. Lett., 34 , L24601. doi:10.1029/2007GL031566.

    • Search Google Scholar
    • Export Citation
  • Balmforth, N. J., , G. R. Ierley, , and W. R. Young, 2002: Tidal conversion by subcritical topography. J. Phys. Oceanogr., 32 , 29002914.

  • Bell, T. H., 1975a: Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 67 , 705722.

  • Bell, T. H., 1975b: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80 , 320327.

  • Carter, G. S., , and M. C. Gregg, 2006: Persistent near-diurnal internal waves observed above a site of M2 barotropic-to-baroclinic conversion. J. Phys. Oceanogr., 36 , 11361147.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405 , 775778.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., , and R. D. Ray, 2001: Estimates of M2 tidal dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106 , (C10). 2247522502.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., , and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39 , 5787.

  • Gerkema, T., , C. Staquet, , and P. Bouruet-Aurbertot, 2006: Decay of semi-diurnal internal-tide beams due to subharmonic resonance. Geophys. Res. Lett., 33 , L08604. doi:10.1029/2005GL025105.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., , M. M. Yale, , and D. T. Sandwell, 2000: Global correlation of mesoscale ocean variability with seafloor roughness from satellite altimetry. Geophys. Res. Lett., 27 , 12511254.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., , and T. H. Jordan, 1988: Stochastic modeling of seafloor morphology: Inversion of sea beam data for second-order statistics. J. Geophys. Res., 93 , (B11). 1358913608.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., , M. Nagasawa, , and Y. Niwa, 2002: Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J. Geophys. Res., 107 , 3207. doi:10.1029/2001JC001210.

    • Search Google Scholar
    • Export Citation
  • Jayne, S., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39 , 17561775.

    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., 2003: Generation of internal tides in an ocean of finite depth: Analytical and numerical calculations. Deep-Sea Res. I, 50 , 321.

    • Search Google Scholar
    • Export Citation
  • Korobov, A. S., , and K. G. Lamb, 2008: Interharmonics in internal gravity waves generated by tide-topography interaction. J. Fluid Mech., 611 , 6195.

    • Search Google Scholar
    • Export Citation
  • Koudella, S. R., , and C. Staquet, 2006: Instability mechanisms of a two-dimensional progressive internal gravity wave. J. Fluid Mech., 548 , 165196.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., , E. Firing, , J. M. Hummon, , T. K. Chereskin, , and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36 , 15531576.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., , A. J. Watson, , and C. S. Law, 1998: Mixing of a tracer released in the pycnocline. J. Geophys. Res., 103 , (C10). 2149921529.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., , E. T. Montgomery, , K. L. Polzin, , L. C. St. Laurent, , R. W. Schmitt, , and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography. Nature, 403 , 179182.

    • Search Google Scholar
    • Export Citation
  • Legg, S., , and K. Huijts, 2006: Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography. Deep-Sea Res. II, 53 , 140156.

    • Search Google Scholar
    • Export Citation
  • Legg, S., , and J. Klymak, 2008: Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. J. Phys. Oceanogr., 38 , 19491964.

    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., , and W. R. Young, 2002: Conversion of the barotropic tide. J. Phys. Oceanogr., 32 , 15541566.

  • Llewellyn Smith, S. G., , and W. R. Young, 2003: Tidal conversion at a very steep ridge. J. Fluid Mech., 495 , 175191.

  • MacKinnon, J. A., , and K. B. Winters, 2005: Subtropical catastrophe: Significant energy loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett., 32 , L15605. doi:10.1029/2005GL023376.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , A. Adcroft, , C. Hill, , L. Perelman, , and C. Heisey, 1997: A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 , (C3). 57535766.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., , and O. Bühler, 2009: Saturation of the internal tides and induced mixing in the abyssal ocean. J. Phys. Oceanogr., 39 , 20772096.

    • Search Google Scholar
    • Export Citation
  • Munk, W., , and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45 , 19772010.

  • Naveira Garabato, A., , K. L. Polzin, , B. A. King, , K. J. Heywood, , and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303 , 210213.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and R. Ferrari, 2010a: Radiation and dissipation of internal waves generated by geostrophic flows impinging on small-scale topography: Application to the Southern Ocean. J. Phys. Oceanogr., 40 , 20252042.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and R. Ferrari, 2010b: Radiation and dissipation of internal waves generated by geostrophic flows impinging on small-scale topography: Theory. J. Phys. Oceanogr., 40 , 10551074.

    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110 , C10028. doi:10.1029/2004JC002487.

  • Olbers, D., , and N. Pomphrey, 1981: Disqualifying two candidates for the energy balance of oceanic internal waves. J. Phys. Oceanogr., 11 , 14231425.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2004: Idealized solutions for the energy balance of the finescale internal wave field. J. Phys. Oceanogr., 34 , 231246.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2009: An abyssal recipe. Ocean Modell., 30 , 298309.

  • Polzin, K. L., , and E. Firing, 1997: Estimates of diapycnal mixing using LADCP and CTD data from I8S. International WOCE Newsletter, No. 29, WOCE International Project Office, Southampton, United Kingdom, 39–42.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , J. M. Toole, , J. R. Ledwell, , and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276 , 9396.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., , S. R. Jayne, , L. C. St. Laurent, , and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6 , 245263.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., , and C. J. R. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32 , 28822899.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., , J. M. Toole, , and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr., 31 , 34763495.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., , H. L. Simmons, , and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29 , 2106. doi:10.1029/2002GL015633.

    • Search Google Scholar
    • Export Citation
  • Thurnherr, J. M., , L. C. St. Laurent, , K. G. Speer, , J. M. Toole, , and J. R. Ledwell, 2005: Mixing associated with sills in a canyon on the mid ocean ridge flank. J. Phys. Oceanogr., 35 , 13701381.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., 2007: Temporal characteristics of abyssal finescale motions above rough bathymetry. J. Phys. Oceanogr., 37 , 409427.

  • Vadas, S. L., , and D. C. Fritts, 2001: Gravity wave radiation and mean responses to local body forces in the atmosphere. J. Atmos. Sci., 58 , 22492279.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., , and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the ocean. Agric. For. Meteor., 36 , 281314.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., , Y. K. Tsang, , and N. J. Balmforth, 2008: Near-inertial parametric subharmonic instability. J. Fluid Mech., 607 , 2549.

  • Zilberman, N. V., , J. M. Becker, , M. A. Merrifield, , and G. C. Carter, 2009: Model estimate of M2 internal tide generation over Mid-Atlantic Ridge topography. J. Phys. Oceanogr., 39 , 26352651.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 301 301 30
PDF Downloads 161 161 21

A Mechanism for Local Dissipation of Internal Tides Generated at Rough Topography

View More View Less
  • 1 Princeton University, Princeton, New Jersey
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Fine- and micro-structure observations indicate that turbulent mixing is enhanced within O(1) km above rough topography. Enhanced mixing is associated with internal wave breaking and, in many regions of the ocean, has been linked to the breaking and dissipation of internal tides. The generation and dissipation of internal tides are explored in this study using a high-resolution two-dimensional nonhydrostatic numerical model, which explicitly resolves the instabilities leading to wave breaking, configured in an idealized domain with a realistic multiscale topography and flow characteristics. The control simulation, chosen to represent the Brazil Basin region, produces a vertical profile of energy dissipation and temporal characteristics of finescale motions that are consistent with observations. Results suggest that a significant fraction of mixing in the bottom O(1) km of the ocean is sustained by the transfer of energy from the large-scale internal tides to smaller-scale internal waves by nonlinear wave–wave interactions. The time scale of the energy transfer to the smaller scales is estimated to be on the order of a few days. A suite of sensitivity experiments is carried out to examine the dependence of the energy transfer time scale and energy dissipation on topographic roughness, tidal amplitude, and Coriolis frequency parameters. Implications for tidal mixing parameterizations are discussed.

Corresponding author address: Maxim Nikurashin, Princeton University, 201 Forrestal Road, Princeton, NJ 08540. Email: man@alum.mit.edu

Abstract

Fine- and micro-structure observations indicate that turbulent mixing is enhanced within O(1) km above rough topography. Enhanced mixing is associated with internal wave breaking and, in many regions of the ocean, has been linked to the breaking and dissipation of internal tides. The generation and dissipation of internal tides are explored in this study using a high-resolution two-dimensional nonhydrostatic numerical model, which explicitly resolves the instabilities leading to wave breaking, configured in an idealized domain with a realistic multiscale topography and flow characteristics. The control simulation, chosen to represent the Brazil Basin region, produces a vertical profile of energy dissipation and temporal characteristics of finescale motions that are consistent with observations. Results suggest that a significant fraction of mixing in the bottom O(1) km of the ocean is sustained by the transfer of energy from the large-scale internal tides to smaller-scale internal waves by nonlinear wave–wave interactions. The time scale of the energy transfer to the smaller scales is estimated to be on the order of a few days. A suite of sensitivity experiments is carried out to examine the dependence of the energy transfer time scale and energy dissipation on topographic roughness, tidal amplitude, and Coriolis frequency parameters. Implications for tidal mixing parameterizations are discussed.

Corresponding author address: Maxim Nikurashin, Princeton University, 201 Forrestal Road, Princeton, NJ 08540. Email: man@alum.mit.edu

Save