• Blumen, W., 1978: Uniform potential vorticity flow: Part I. Theory of wave interactions and two-dimensional turbulence. J. Atmos. Sci., 35, 774783.

    • Search Google Scholar
    • Export Citation
  • Boyd, J. P., 1992: The energy spectrum of fronts: Time evolution of shocks in Burger’s equation. J. Atmos. Sci., 49, 128139.

  • Capet, X., P. Klein, B. Hua, G. Lapeyre, and J. C. McWilliams, 2008a: Surface kinetic energy transfer in surface quasi-geostrophic flows. J. Fluid Mech., 604, 165174.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871094.

  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., doi:10.1016/j.pocean.2011.01.002, in press.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high resolution mapping of ocean circulation from the combination of TOPEX/POSEIDON and ERS-1/2. J. Geophys. Res., 105, 19 47719 498.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and P. Müller, 1979: Quasi-geostrophic response of an infinite β-plane ocean to stochastic forcing by the atmosphere. J. Phys. Oceanogr., 9, 104127.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., 1983: On the wave number spectrum of oceanic mesoscale variability observed by the SEASAT altimeter. J. Geophys. Res., 88, 43314341.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., and G. R. Flierl, 1980: Nonlinear energy and enstrophy transfers in a realistically stratified ocean. Dyn. Atmos. Oceans, 4, 219246.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. T. Pierrehumbert, S. T. Garner, and K. L. Swanson, 1995: Surface quasi-geostrophic dynamics. J. Fluid Mech., 282, 120.

    • Search Google Scholar
    • Export Citation
  • Hua, B. L., and D. B. Haidvogel, 1986: Numerical simulations of the vertical structure of quasi-geostrophic turbulence. J. Atmos. Sci., 43, 29232936.

    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., B. Chapron, G. Lapeyre, and P. Klein, 2006: Potential use of microwave sea surface temperatures for the estimation of ocean currents. Geophys. Res. Lett., 33, L24608, doi:10.1029/2006GL027801.

    • Search Google Scholar
    • Export Citation
  • Klein, P., B. L. Hua, G. Lapeyre, X. Capet, S. Le Gentl, and H. Sasaki, 2008: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., M. C. Rouquet, and C. Boissier, 1990: Spatial scales of mesoscale variability in the North Atlantic as deduced from Geosat data. J. Geophys. Res., 95, 20 26720 285.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., P. Klein, and B. L. Hua, 2008: Do altimeter wavenumber spectra agree with the interior or surface quasigeostrophic theory?. J. Phys. Oceanogr., 38, 1137.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1989: Statistical properties of decaying geostrophic turbulence. J. Fluid Mech., 108, 199230.

  • Ménard, Y., and Coauthors, 2003: Jason-1 calibration/validation. Mar. Geod., 26, 131146.

  • Montgomery, D. C., E. A. Peck, and G. G. Vining, 2001: Introduction to Linear Regression Analysis. 3rd ed. Wiley, 641 pp.

  • Rhines, P. B., 1979: Geostrophic turbulence. Annu. Rev. Fluid Mech., 11, 401441.

  • Salmon, R. S., 1980: Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn., 15, 167221.

  • Scott, R. B., and F.-M. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and G. K. Vallis, 2001: The scales and equilibration of midocean eddies: Freely evolving flow. J. Phys. Oceanogr., 31, 554571.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements. J. Phys. Oceanogr., 27, 17431769.

    • Search Google Scholar
    • Export Citation
  • Willett, C. S., R. Leben, and M. F. Lavın, 2006: Eddies and mesoscale processes in the eastern tropical Pacific: A review. Prog. Oceanogr., 69, 218238.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 518 308 43
PDF Downloads 458 205 22

Global Variability of the Wavenumber Spectrum of Oceanic Mesoscale Turbulence

Yongsheng XuJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Yongsheng Xu in
Current site
Google Scholar
PubMed
Close
and
Lee-Lueng FuJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Lee-Lueng Fu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The wavenumber spectra of sea surface height from satellite altimeter observations have revealed complex spatial variability that cannot be explained by a universal theory of mesoscale turbulence. Near the edge of the core regions of high eddy energy, agreement is observed with the prediction of the surface quasigeostrophic (SQG) turbulence theory, which has fundamental differences from that of the traditional quasigeostrophic (QG) turbulence theory. In the core regions of high eddy energy, the spectra are consistent with frontogenesis that is not fully accounted for by the SQG theory. However, the observations in the vast ocean interior of low eddy energy exhibit substantial differences from the predictions of existing theories of oceanic mesoscale turbulence. The spectra in these regions may reflect the ocean’s response to short-scale atmospheric forcing and air–sea interaction. The observations presented in this paper serve as a test bed for new theories and ocean general circulation models.

Corresponding author address: Yongsheng Xu, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: yongsheng.xu@jpl.nasa.gov

Abstract

The wavenumber spectra of sea surface height from satellite altimeter observations have revealed complex spatial variability that cannot be explained by a universal theory of mesoscale turbulence. Near the edge of the core regions of high eddy energy, agreement is observed with the prediction of the surface quasigeostrophic (SQG) turbulence theory, which has fundamental differences from that of the traditional quasigeostrophic (QG) turbulence theory. In the core regions of high eddy energy, the spectra are consistent with frontogenesis that is not fully accounted for by the SQG theory. However, the observations in the vast ocean interior of low eddy energy exhibit substantial differences from the predictions of existing theories of oceanic mesoscale turbulence. The spectra in these regions may reflect the ocean’s response to short-scale atmospheric forcing and air–sea interaction. The observations presented in this paper serve as a test bed for new theories and ocean general circulation models.

Corresponding author address: Yongsheng Xu, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: yongsheng.xu@jpl.nasa.gov
Save