The Breaking and Scattering of the Internal Tide on a Continental Slope

Jody M. Klymak School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Jody M. Klymak in
Current site
Google Scholar
PubMed
Close
,
Matthew H. Alford Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Matthew H. Alford in
Current site
Google Scholar
PubMed
Close
,
Robert Pinkel Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Robert Pinkel in
Current site
Google Scholar
PubMed
Close
,
Ren-Chieh Lien Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Ren-Chieh Lien in
Current site
Google Scholar
PubMed
Close
,
Yung Jang Yang Department of Marine Science, Naval Academy, Kaohsiung, Taiwan

Search for other papers by Yung Jang Yang in
Current site
Google Scholar
PubMed
Close
, and
Tswen-Yung Tang Institute of Oceanography, National Taiwan University, Taipei, Taiwan

Search for other papers by Tswen-Yung Tang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A strong internal tide is generated in the Luzon Strait that radiates westward to impact the continental shelf of the South China Sea. Mooring data in 1500-m depth on the continental slope show a fortnightly averaged incoming tidal flux of 12 kW m−1, and a mooring on a broad plateau on the slope finds a similar flux as an upper bound. Of this, 5.5 kW m−1 is in the diurnal tide and 3.5 kW m−1 is in the semidiurnal tide, with the remainder in higher-frequency motions. Turbulence dissipation may be as high as 3 kW m−1. Local generation is estimated from a linear model to be less than 1 kW m−1. The continental slope is supercritical with respect to the diurnal tide, implying that there may be significant back reflection into the basin. Comparing the low-mode energy of a horizontal standing wave at the mooring to the energy flux indicates that perhaps one-third of the incoming diurnal tidal energy is reflected. Conversely, the slope is subcritical with respect to the semidiurnal tide, and the observed reflection is very weak. A surprising observation is that, despite significant diurnal vertical-mode-2 incident energy flux, this energy did not reflect; most of the reflection was in mode 1.

The observations are consistent with a linear scattering model for supercritical topography. Large fractions of incoming energy can reflect depending on both the geometry of the shelfbreak and the phase between the modal components of the incoming flux. If the incident mode-1 and mode-2 waves are in phase at the shelf break, there is substantial transmission onto the shelf; if they are out of phase, there is almost 100% reflection. The observations of the diurnal tide at the site are consistent with the first case: weak reflection, with most of it in mode 1 and almost no reflection in mode 2. The sensitivity of the reflection on the phase between incident components significantly complicates the prediction of reflections from continental shelves.

Finally, a somewhat incidental observation is that the shape of the continental slope has large regions that are near critical to the dominant diurnal tide. This implicates the internal tide in shaping of the continental slope.

Corresponding author address: Jody M. Klymak, School of Earth and Ocean Sciences, University of Victoria, P.O. Box 3055 STN CSC, Victoria BC V8W 3P6, Canada. E-mail: jklymak@uvic.ca

Abstract

A strong internal tide is generated in the Luzon Strait that radiates westward to impact the continental shelf of the South China Sea. Mooring data in 1500-m depth on the continental slope show a fortnightly averaged incoming tidal flux of 12 kW m−1, and a mooring on a broad plateau on the slope finds a similar flux as an upper bound. Of this, 5.5 kW m−1 is in the diurnal tide and 3.5 kW m−1 is in the semidiurnal tide, with the remainder in higher-frequency motions. Turbulence dissipation may be as high as 3 kW m−1. Local generation is estimated from a linear model to be less than 1 kW m−1. The continental slope is supercritical with respect to the diurnal tide, implying that there may be significant back reflection into the basin. Comparing the low-mode energy of a horizontal standing wave at the mooring to the energy flux indicates that perhaps one-third of the incoming diurnal tidal energy is reflected. Conversely, the slope is subcritical with respect to the semidiurnal tide, and the observed reflection is very weak. A surprising observation is that, despite significant diurnal vertical-mode-2 incident energy flux, this energy did not reflect; most of the reflection was in mode 1.

The observations are consistent with a linear scattering model for supercritical topography. Large fractions of incoming energy can reflect depending on both the geometry of the shelfbreak and the phase between the modal components of the incoming flux. If the incident mode-1 and mode-2 waves are in phase at the shelf break, there is substantial transmission onto the shelf; if they are out of phase, there is almost 100% reflection. The observations of the diurnal tide at the site are consistent with the first case: weak reflection, with most of it in mode 1 and almost no reflection in mode 2. The sensitivity of the reflection on the phase between incident components significantly complicates the prediction of reflections from continental shelves.

Finally, a somewhat incidental observation is that the shape of the continental slope has large regions that are near critical to the dominant diurnal tide. This implicates the internal tide in shaping of the continental slope.

Corresponding author address: Jody M. Klymak, School of Earth and Ocean Sciences, University of Victoria, P.O. Box 3055 STN CSC, Victoria BC V8W 3P6, Canada. E-mail: jklymak@uvic.ca
Save
  • Alford, M. H., and R. Pinkel, 2000: Observations of overturning in the thermocline: The context of ocean mixing. J. Phys. Oceanogr., 30, 805832.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Z. Zhao, 2007: Global patterns of low-mode internal-wave propagation. Part II: Group velocity. J. Phys. Oceanogr., 37, 18491858.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., R. Lien, H. Simmons, J. Klymak, S. Ramp, Y. Yang, D. Tang, and M.-H. Chang, 2010: Speed and evolution of nonlinear internal waves transiting the South China Sea. J. Phys. Oceanogr., 40, 13381355.

    • Search Google Scholar
    • Export Citation
  • Aucan, J., M. A. Merrifield, D. S. Luther, and P. Flament, 2006: Tidal mixing events on the deep flanks of Kaena Ridge, Hawaii. J. Phys. Oceanogr., 36, 12021219.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., Y. Kanarska, and J. C. McWilliams, 2010: On the generation and evolution of nonlinear internal waves in the South China Sea. J. Geophys. Res., 115, C02012, doi:10.1029/2009JC005275.

    • Search Google Scholar
    • Export Citation
  • Cacchione, D. A., L. F. Pratson, and A. S. Ogston, 2002: The shaping of continental slopes by internal tides. Science, 296, 724727.

  • Carter, G. S., and Coauthors, 2008: Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J. Phys. Oceanogr., 38, 22052223.

    • Search Google Scholar
    • Export Citation
  • Chang, M.-H., R.-C. Lien, T.-Y. Tang, E. A. D’Asaro, and Y.-J. Yang, 2006: Energy flux of nonlinear internal waves in northern South China Sea. Geophys. Res. Lett., 33, L03607, doi:10.1029/2005GL025196.

    • Search Google Scholar
    • Export Citation
  • Chapman, D., and M. Hendershott, 1981: Scattering of internal waves obliquely incident upon a step change in bottom relief. Deep-Sea Res., 28A, 13231338.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., W. R. Young, and S. Llewellyn Smith, 2006: Numerical and analytical estimates of M2 tidal conversion at steep oceanic ridges. J. Phys. Oceanogr., 36, 10721084.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204.

    • Search Google Scholar
    • Export Citation
  • Farmer, D., Q. Li, and J. Park, 2009: Internal wave observations in the South China Sea: The role of rotation and non-linearity. Atmos.–Ocean, 47, 267280.

    • Search Google Scholar
    • Export Citation
  • Huang, R., 1994: Thermohaline circulation: Energetics and variability in a single-hemisphere basin model. J. Geophys. Res., 99, 12 47112 485.

    • Search Google Scholar
    • Export Citation
  • Inall, M., T. Rippeth, C. Griffiths, and P. Wiles, 2005: Evolution and distribution of TKE production and dissipation within stratified flow over topography. Geophys. Res. Lett., 32, L08607, doi:10.1029/2004GL022289.

    • Search Google Scholar
    • Export Citation
  • Jan, S., C. Chern, J. Wang, and S. Chao, 2007: Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. J. Geophys. Res., 112, C06019, doi:10.1029/2006JC004003.

    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., and M. A. Merrifield, 2003: Internal tide scattering at seamounts, ridges, and islands. J. Geophys. Res., 108, 3180, doi:10.1029/2002JC001528.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., J. D. Nash, and E. Kunze, 2010: Internal-tide energy over topography. J. Geophys. Res., 115, C06014, doi:10.1029/2009JC005618.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and M. C. Gregg, 2004: Tidally generated turbulence over the Knight Inlet sill. J. Phys. Oceanogr., 34, 11351151.

  • Klymak, J. M., and Coauthors, 2006a: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, C.-T. Liu, A. K. Liu, and L. David, 2006b: Prototypical solitons in the South China Sea. Geophys. Res. Lett., 33, L11607, doi:10.1029/2006GL025932.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., S. Legg, and R. Pinkel, 2010a: High-mode stationary waves in stratified flow over large obstacles. J. Fluid Mech., 644, 312336.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., S. Legg, and R. Pinkel, 2010b: A simple parameterization of turbulent tidal mixing near supercritical topography. J. Phys. Oceanogr., 40, 20592074.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., 1990: Fluid Mechanics. Academic Press, 638 pp.

  • Kunze, E. L., L. K. Rosenfeld, G. S. Carter, and M. C. Gregg, 2002: Internal waves in Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 18901913.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and J. Klymak, 2008: Internal hydrualic jumps and overturning generated by tidal flow over a tall steep ridge. J. Phys. Oceanogr., 38, 19491964.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., and T. J. Boyd, 2006: Tidally forced internal waves and overturns observed on a slope: Results from HOME. J. Phys. Oceanogr., 36, 11841201.

    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., T. Y. Tang, M. H. Chang, and E. A. D’Asaro, 2005: Energy of nonlinear internal waves in the South China Sea. Geophys. Res. Lett., 32, L05615, doi:10.1029/2004GL022012.

    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., and W. R. Young, 2003: Tidal conversion at a very steep ridge. J. Fluid Mech., 495, 175191.

  • Martini, K. I., M. H. Alford, J. D. Nash, E. Kunze, and M. A. Merrifield, 2007: Diagnosing a partly standing internal wave in Mamala Bay, Oahu. Geophys. Res. Lett., 34, L17604, doi:10.1029/2007GL029749.

    • Search Google Scholar
    • Export Citation
  • McPhee-Shaw, E. E., and E. Kunze, 2002: Boundary layer intrusions from a sloping bottom: A mechanism for generating intermediate nepheloid layers. J. Geophys. Res., 107, 3050, doi:10.1029/2001JC000801.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., and P. E. Holloway, 2002: Model estimate of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res., 107, 3179, doi:10.1029/2001JC000996.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45, 19772010.

  • Nakamura, T., T. Awaji, T. Hatayama, K. Akitomo, T. Takizawa, T. Kono, Y. Kawasaki, and M. Fukasawa, 2000: The generation of large-amplitude unsteady lee waves by subinertial K1 tidal flow: A possible vertical mixing mechanism in the Kuril Straits. J. Phys. Oceanogr., 30, 16011621.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Kunze, J. M. Toole, and R. W. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 11171134.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: Estimating internal wave energy fluxes in the ocean. J. Atmos. Ocean. Technol., 22, 15511570.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, E. Kunze, K. Martini, and S. Kelly, 2007: Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett., 34, L01605, doi:10.1029/2006GL028170.

    • Search Google Scholar
    • Export Citation
  • Nissen, S., D. Hayes, Y. Bochu, Z. Weijun, C. Yongqin, and N. Xiaupin, 1995: Gravity, heat flow, and seismic constraints on the processes of crustal extension: Northern margin of the South China Sea. J. Geophys. Res., 100, 22 44722 483.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2004: Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res., 109, C04027, doi:10.1029/2003JC001923.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Observations of the propagation and nonlinear interaction of the internal tide generated at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11041122.

    • Search Google Scholar
    • Export Citation
  • Ramp, S. R., and Coauthors, 2004: Internal solitons in the northeastern South China Sea. Part I: Sources and deep water propagation. IEEE J. Oceanic Eng., 29, 11571181.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355357.

  • Smith, W., and D. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 1956.

  • St. Laurent, L., 2008: Turbulent dissipation on the margins of the South China Sea. Geophys. Res. Lett., 35, L23615, doi:10.1029/2008GL035520.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899.

  • St. Laurent, L., S. Stringer, C. Garrett, and D. Perrault-Joncas, 2003: The generation of internal tides at abrupt topography. Deep-Sea Res. I, 50, 9871003, doi:10.1016/S0967-0637(03)00096-7.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish loch. Phil. Trans. Roy. Soc. London, 286A, 125181.

  • Zhao, Z., V. Klemas, Q. Zheng, and X.-H. Yan, 2004: Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys. Res. Lett., 31, L06302, doi:10.1029/2003GL019077.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1063 326 28
PDF Downloads 965 258 10