• Bingham, R. J., C. W. Hughes, V. Roussenov, and R. G. Williams, 2007: Meridional coherence of the North Atlantic meridional overturning circulation. Geophys. Res. Lett., 34, L23606, doi:10.1029/2007GL031731.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., and H. T. Rossby, 1989: Evidence of cross-frontal exchange processes in the Gulf Stream based on isopycnal RAFOS float data. J. Phys. Oceanogr., 19, 11771190.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., and M. S. Lozier, 1994: A closer look at particle exchange in the Gulf Stream. J. Phys. Oceanogr., 24, 13991418.

  • Bower, A. S., H. T. Rossby, and J. L. Lillibridge, 1985: The Gulf Stream—Barrier or blender?. J. Phys. Oceanogr., 15, 2432.

  • Bower, A. S., M. S. Lozier, S. F. Gary, and C. W. Boning, 2009: Interior pathways of the North Atlantic meridional overturning circulation. Nature, 459, 243247.

    • Search Google Scholar
    • Export Citation
  • Brambilla, E., and L. D. Talley, 2006: Surface drifter exchange between the North Atlantic subtropical and subpolar gyres. J. Geophys. Res., 111, C07026, doi:10.1029/2005JC003146.

    • Search Google Scholar
    • Export Citation
  • Coulliette, C., F. Lekien, J. D. Paduan, G. Haller, and J. E. Marsden, 2007: Optimal pollution mitigation in Monterey Bay based on coastal radar data and nonlinear dynamics. Environ. Sci. Technol., 41, 65626572.

    • Search Google Scholar
    • Export Citation
  • Deese, H. E., L. J. Pratt, and K. R. Helfrich, 2002: A laboratory model of exchange and mixing between western boundary layers and subbasin recirculation gyres. J. Phys. Oceanogr., 32, 18701889.

    • Search Google Scholar
    • Export Citation
  • d’Ovidio, F., V. Fernández, E. Hernández-Gracía, and C. López, 2004: Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys. Res. Lett., 31, L17203, doi:10.1029/2004GL020328.

    • Search Google Scholar
    • Export Citation
  • d’Ovidio, F., J. Isern-Fontane, C. López, E. Hernández-García, and E. García-Ladona, 2009: Comparison between Eulerian diagnostics and finite-size Lyapunov exponents computed from altimetry in the Algerian basin. Deep-Sea Res. I, 56, 1531.

    • Search Google Scholar
    • Export Citation
  • Gawarkiewicz, G., and C. A. Linder, 2006: Lagrangian flow patterns north of Cape Hatteras using near-surface drifters. Prog. Oceanogr., 70, 181195.

    • Search Google Scholar
    • Export Citation
  • Hakkinen, S., and P. B. Rhines, 2009: Shifting surface currents in the northern North Atlantic Ocean. J. Geophys. Res., 114, C04005, doi:10.1029/2008JC004883.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2001a: Distinguished material surfaces and coherent structures in 3D fluid flows. Physica D, 149, 248277.

  • Haller, G., 2001b: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids, 13, 33653385.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2002: Lagrangian coherent structures from approximate velocity data. Phys. Fluids, 14, 18511861.

  • Haller, G., and A. C. Poje, 1998: Finite time transport in aperiodic flows. Physica D, 119, 352380.

  • Holliday, N. P., and Coauthors, 2008: Reversal of the 1960s to 1990s freshening trend in the northeast North Atlantic and Nordic Seas. Geophys. Res. Lett., 35, L03614, doi:10.1029/2007GL032675.

    • Search Google Scholar
    • Export Citation
  • Johns, W. E., T. J. Shay, J. M. Bane, and D. R. Watts, 1995: Gulf Stream structure, transport, and recirculation near 68°W. J. Geophys. Res., 100, 817838.

    • Search Google Scholar
    • Export Citation
  • Kuznetsov, L., M. Toner, A. D. Kirwan, C. K. R. T. Jones, L. H. Kantha, and J. Choi, 2002: The Loop Current and adjacent rings delineated by Lagrangian analysis of the near-surface flow. J. Mar. Res., 60, 405429.

    • Search Google Scholar
    • Export Citation
  • Lekien, F., and S. D. Ross, 2010: The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos, 20, 017505, doi:10.1063/1.3278516.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and S. C. Riser, 1990: Potential vorticity sources and sinks in a quasi-geostrophic ocean: Beyond western boundary currents. J. Phys. Oceanogr., 20, 16081627.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and D. Bercovici, 1992: Particle exchange in an unstable jet. J. Phys. Oceanogr., 22, 15061516.

  • Mancho, A. M., D. Small, and S. Wiggins, 2006: A tutorial on dynamical systems concepts applied to Lagrangian transport in oceanic flows defined as finite time data sets: Theoretical and computational issues. Phys. Rep., 437, 55124.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N., P. Niiler, M.-H. Rio, O. Melnichenko, L. Centurioni, D. Chambers, V. Zlotnicki, and B. Galperin, 2009: Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J. Atmos. Oceanic Technol., 26, 19101919.

    • Search Google Scholar
    • Export Citation
  • Olascoaga, M. J., I. I. Rypina, M. G. Brown, F. J. Beron-Vera, H. Kocak, L. E. Brand, G. R. Halliwell, and L. K. Shay, 2006: Persistent transport barrier on the West Florida Shelf. Geophys. Res. Lett., 33, L22603, doi:10.1029/2006GL027800.

    • Search Google Scholar
    • Export Citation
  • Poje, A. C., and G. Haller, 1999: Geometry of cross-stream mixing in a double-gyre ocean model. J. Phys. Oceanogr., 29, 16491665.

  • Pratt, L. J., M. S. Lozier, and N. Beliakova, 1995: Parcel trajectories in quasigeostrophic jets: Neutral modes. J. Phys. Oceanogr., 25, 14511466.

    • Search Google Scholar
    • Export Citation
  • Ralph, E. A., and P. P. Niiler, 1999: Wind-driven currents in the tropical Pacific. J. Phys. Oceanogr., 29, 21212129.

  • Rogerson, A., P. D. Miller, L. J. Pratt, and C. K. R. T. Jones, 1999: Lagrangian motion and fluid exchange in a barotropic meandering jet. J. Phys. Oceanogr., 29, 26352655.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., M. G. Brown, F. J. Beron-Vera, H. Kocak, M. J. Olascoaga, and I. A. Udovydchenkov, 2007: On the Lagrangian dynamics of atmospheric zonal jets and the permeability of the stratospheric polar vortex. J. Atmos. Sci., 64, 35933610.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., M. G. Brown, and H. Kocak, 2009: Transport in an idealized three-gyre system with an application to the Adriatic Sea. J. Phys. Oceanogr., 39, 675690.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., L. J. Pratt, J. Pullen, J. Levin, and A. Gordon, 2010: Chaotic advection in an archipelago. J. Phys. Oceanogr., 40, 19882006.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., and S. Wiggins, 2006: Lagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach. Springer-Verlag, 147 pp.

    • Search Google Scholar
    • Export Citation
  • Sevryuk, M. B., 2007: Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman’s method. Discrete Contin. Dyn. Syst., 18, 569595.

    • Search Google Scholar
    • Export Citation
  • Shadden, S. C., F. Lekien, and J. E. Marsden, 2005: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D, 212, 271304.

    • Search Google Scholar
    • Export Citation
  • Shadden, S. C., F. Lekien, J. D. Paduan, F. P. Chavez, and J. E. Marsden, 2009: The correlation between surface drifters and coherent structures based on high-frequency radar data in Monterey Bay. Deep-Sea Res. II, 56, 161172.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. 1. The basic experiment. Mon. Wea. Rev., 91, 99164.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 1992: Cooling spirals and recirculation in the subtropical gyre. J. Phys. Oceanogr., 22, 564571.

  • Spall, M. A., R. S. Pickart, P. S. Fratantoni, and A. J. Plueddermann, 2008: Western Arctic shelfbreak eddies: Formulation and transport. J. Phys. Oceanogr., 38, 16441668.

    • Search Google Scholar
    • Export Citation
  • Stommel, H. M., and A. B. Arons, 1960: On the abyssal circulation of the World Ocean—I. Stationary planetary flow patterns on a sphere. Deep-Sea Res., 6, 140154.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402.

    • Search Google Scholar
    • Export Citation
  • Yuan, G.-C., L. J. Pratt, and C. K. R. T. Jones, 2002: Barrier destruction and Lagrangian predictability at depth in a meandering jet. Dyn. Atmos. Oceans, 35, 4161.

    • Search Google Scholar
    • Export Citation
  • Yuan, G.-C., L. J. Pratt, and C. K. R. T. Jones, 2004: Cross-jet Lagrangian transport and mixing in a 2 1/2-layer model. J. Phys. Oceanogr., 34, 19912005.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2 2 2
PDF Downloads 1 1 1

Near-Surface Transport Pathways in the North Atlantic Ocean: Looking for Throughput from the Subtropical to the Subpolar Gyre

View More View Less
  • 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, North Carolina
Restricted access

Abstract

Motivated by discrepancies between Eulerian transport estimates and the behavior of Lagrangian surface drifters, near-surface transport pathways and processes in the North Atlantic are studied using a combination of data, altimetric surface heights, statistical analysis of trajectories, and dynamical systems techniques. Particular attention is paid to the issue of the subtropical-to-subpolar intergyre fluid exchange. The velocity field used in this study is composed of a steady drifter-derived background flow, upon which a time-dependent altimeter-based perturbation is superimposed. This analysis suggests that most of the fluid entering the subpolar gyre from the subtropical gyre within two years comes from a narrow region lying inshore of the Gulf Stream core, whereas fluid on the offshore side of the Gulf Stream is largely prevented from doing so by the Gulf Stream core, which acts as a strong transport barrier, in agreement with past studies. The transport barrier near the Gulf Stream core is robust and persistent from 1992 until 2008. The qualitative behavior is found to be largely independent of the Ekman drift.

Corresponding author address: Irina I. Rypina, Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. E-mail: irypina@whoi.edu

Abstract

Motivated by discrepancies between Eulerian transport estimates and the behavior of Lagrangian surface drifters, near-surface transport pathways and processes in the North Atlantic are studied using a combination of data, altimetric surface heights, statistical analysis of trajectories, and dynamical systems techniques. Particular attention is paid to the issue of the subtropical-to-subpolar intergyre fluid exchange. The velocity field used in this study is composed of a steady drifter-derived background flow, upon which a time-dependent altimeter-based perturbation is superimposed. This analysis suggests that most of the fluid entering the subpolar gyre from the subtropical gyre within two years comes from a narrow region lying inshore of the Gulf Stream core, whereas fluid on the offshore side of the Gulf Stream is largely prevented from doing so by the Gulf Stream core, which acts as a strong transport barrier, in agreement with past studies. The transport barrier near the Gulf Stream core is robust and persistent from 1992 until 2008. The qualitative behavior is found to be largely independent of the Ekman drift.

Corresponding author address: Irina I. Rypina, Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. E-mail: irypina@whoi.edu
Save