• Biastoch, A., C. W. Böning, F. U. Schwarzkopf, and J. R. E. Lutjeharms, 2009: Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature, 462, 495499.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., M. Arhan, S. Speich, and K. Pailler, 2002: Diagnosing and picturing the North Atlantic segment of the global conveyor belt by means of an ocean general circulation model. J. Phys. Oceanogr., 32, 14301451.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., M. Arhan, and S. Speich, 2006: Salinity changes along the upper limb of the Atlantic thermohaline circulation. Geophys. Res. Lett., 33, L06609, doi:10.1029/2005GL024938.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., M. S. Lozier, S. F. Gary, and C. W. Böning, 2009: Interior pathways of the North Atlantic meridional overturning circulation. Nature, 459, 243248.

    • Search Google Scholar
    • Export Citation
  • Brambilla, E., and L. D. Talley, 2006: Surface drifter exchange between the North Atlantic subtropical and subpolar gyres. J. Geophys. Res., 111, C07026, doi:10.1029/2005JC003146.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1997: Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science, 278, 15821588.

    • Search Google Scholar
    • Export Citation
  • Döös, K., 1995: Interocean exchange of water masses. J. Geophys. Res., 100, 13 49913 514.

  • Drijfhout, S. S., E. Maier-Reimer, and U. Mikolajewicz, 1996: Tracing the conveyor belt in the Hamburg large-scale geostrophic ocean general circulation model. J. Geophys. Res., 101, 22 56322 575.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080.

    • Search Google Scholar
    • Export Citation
  • Griffa, A., A. D. Kirwan Jr., A. J. Mariano, T. Özgökmen, and H. T. Rossby, 2007: Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics. Cambridge University Press, 487 pp.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 373–386.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and D. P. Marshall, 2004: Global teleconnections of meridional overturning circulation anomalies. J. Phys. Oceanogr., 34, 17021722.

    • Search Google Scholar
    • Export Citation
  • Knorr, G., and G. Lohmann, 2003: Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature, 424, 532536.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., 2010: Deconstructing the conveyor belt. Science, 328, 15071511.

  • Lumpkin, R., 2003: Decomposition of surface drifter observations in the Atlantic Ocean. Geophys. Res. Lett., 30, 1753.

  • Maltrud, M. E., F. O. Bryan, and S. Peacock, 2010: Boundary impulse response functions in a century-long eddying global ocean simulation. Environ. Fluid Mech., 10, 275295.

    • Search Google Scholar
    • Export Citation
  • Mariano, A. J., A. Griffa, T. Özgökmen, and E. Zambianchi, 2002: Lagrangian Analysis and Predictability of Coastal and Ocean Dynamics 2000. J. Atmos. Oceanic Technol., 19, 11141126.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., P. P. Niiler, L. Centurioni, M. H. Rio, O. V. Melnichenko, D. Chambers, V. Zlotnicki, and B. Galperin, 2009: Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J. Atmos. Oceanic Technol., 26, 19101919.

    • Search Google Scholar
    • Export Citation
  • Newman, M. E. J., and G. T. Barkema, 1999: Monte Carlo Methods in Statistical Physics. Oxford University Press, 475 pp.

  • Özgökmen, T., A. Griffa, A. J. Mariano, and L. I. Piterbarg, 2000: On the predictability of Lagrangian trajectories in the ocean. J. Atmos. Oceanic Technol., 17, 366383.

    • Search Google Scholar
    • Export Citation
  • Peeters, F. J. C., R. Acheson, G. A. Brummer, W. P. M. De Ruijter, R. R. Schneider, G. M. Ganssen, E. Ufkes, and D. Kroon, 2004: Vigorous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods. Nature, 430, 661665.

    • Search Google Scholar
    • Export Citation
  • Piterbarg, L. I., 2001: Short-term prediction of Lagrangian trajectories. J. Atmos. Oceanic Technol., 18, 13981410.

  • Rintoul, S. R., 1991: South Atlantic interbasin exchange. J. Geophys. Res., 96, 26752692.

  • Rouault, M., P. Penven, and B. Pohl, 2009: Warming in the Agulhas Current system since the 1980’s. Geophys. Res. Lett., 36, L12602, doi:10.1029/2009GL037987.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, 2008: An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth Simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 157–185.

    • Search Google Scholar
    • Export Citation
  • Speich, S., B. Blanke, and G. Madec, 2001: Warm and cold water routes of an OGCM thermohaline conveyor belt. Geophys. Res. Lett., 28, 311314.

    • Search Google Scholar
    • Export Citation
  • Speich, S., B. Blanke, and W. Cai, 2007: Atlantic meridional overturning circulation and the Southern Hemisphere supergyre. Geophys. Res. Lett., 34, L23614, doi:10.1029/2007GL031583.

    • Search Google Scholar
    • Export Citation
  • van Sebille, E., and P. J. van Leeuwen, 2007: Fast northward energy transfer in the Atlantic due to Agulhas rings. J. Phys. Oceanogr., 37, 23052315.

    • Search Google Scholar
    • Export Citation
  • van Sebille, E., P. J. van Leeuwen, A. Biastoch, C. N. Barron, and W. P. M. De Ruijter, 2009: Lagrangian validation of numerical drifter trajectories using drifting buoys: Application to the Agulhas region. Ocean Modell., 29, 269276.

    • Search Google Scholar
    • Export Citation
  • van Sebille, E., P. J. van Leeuwen, A. Biastoch, and W. P. M. De Ruijter, 2010: Flux comparison of Eulerian and Lagrangian estimates of Agulhas leakage: A case study using a numerical model. Deep-Sea Res. I, 57, 319327.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., W. P. M. De Ruijter, A. Sterl, and S. S. Drijfhout, 2002: Response of the Atlantic overturning circulation to South Atlantic sources of buoyancy. Global Planet. Change, 34, 293311.

    • Search Google Scholar
    • Export Citation
  • Willis, J. K., and L.-L. Fu, 2008: Combining altimeter and subsurface float data to estimate the time-averaged circulation in the upper ocean. J. Geophys. Res., 113, C12017, doi:10.1029/2007JC004690.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2010: Latitudinal dependence of Atlantic meridional overturning circulation (AMOC) variations. Geophys. Res. Lett., 37, L16703, doi:10.1029/2010GL044474.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 4 4 4

Advective Time Scales of Agulhas Leakage to the North Atlantic in Surface Drifter Observations and the 3D OFES Model

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
Restricted access

Abstract

The advective transit time of temperature–salinity anomalies from the Agulhas region to the regions of deep convection in the North Atlantic Ocean is an important time scale in climate, because it has been linked to variability in the Atlantic meridional overturning circulation. Studying this transit time scale is difficult, because most observational and high-resolution model data are too short for assessment of the global circulation on decadal to centennial time scales. Here, results are presented from a technique to obtain thousands of “supertrajectories” of any required length using a Monte Carlo simulation. These supertrajectories allow analysis of the circulation patterns and time scales based on Lagrangian data: in this case, observational surface drifter trajectories from the Global Drifter Program and Lagrangian data from the high-resolution OGCM for the Earth Simulator (OFES). The observational supertrajectories can only be used to study the two-dimensional (2D) surface flow, whereas the numerical supertrajectories can be used to study the full three-dimensional circulation. Results for the surface circulation indicate that the supertrajectories starting in the Agulhas Current and ending in the North Atlantic take at least 4 yr and most complete the journey in 30–40 yr. This time scale is, largely because of convergence and subduction in the subtropical gyres, longer than the 10–25 yr it takes the 3D numerical supertrajectories to complete the journey.

Corresponding author address: Erik van Sebille, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: evansebille@rsmas.miami.edu

Abstract

The advective transit time of temperature–salinity anomalies from the Agulhas region to the regions of deep convection in the North Atlantic Ocean is an important time scale in climate, because it has been linked to variability in the Atlantic meridional overturning circulation. Studying this transit time scale is difficult, because most observational and high-resolution model data are too short for assessment of the global circulation on decadal to centennial time scales. Here, results are presented from a technique to obtain thousands of “supertrajectories” of any required length using a Monte Carlo simulation. These supertrajectories allow analysis of the circulation patterns and time scales based on Lagrangian data: in this case, observational surface drifter trajectories from the Global Drifter Program and Lagrangian data from the high-resolution OGCM for the Earth Simulator (OFES). The observational supertrajectories can only be used to study the two-dimensional (2D) surface flow, whereas the numerical supertrajectories can be used to study the full three-dimensional circulation. Results for the surface circulation indicate that the supertrajectories starting in the Agulhas Current and ending in the North Atlantic take at least 4 yr and most complete the journey in 30–40 yr. This time scale is, largely because of convergence and subduction in the subtropical gyres, longer than the 10–25 yr it takes the 3D numerical supertrajectories to complete the journey.

Corresponding author address: Erik van Sebille, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: evansebille@rsmas.miami.edu
Save