• Alford, M. H., R.-C. Lien, H. Simmons, J. Klymak, S. Ramp, Y. J. Yang, D. Tang, and M.-H. Chang, 2010: Speed and evolution of nonlinear internal waves transiting the South China Sea. J. Phys. Oceanogr., 40, 13381355.

    • Search Google Scholar
    • Export Citation
  • Boyd, J. P., 2005: Microbreaking and polycnoidal waves in the Ostrovsky-Hunter equation. Phys. Lett., 338, 3643.

  • Boyd, J. P., and G. Chen, 2002: Five regimes of the quasi-cnoidal, steadily translating waves of the rotation-modified Korteweg-de Vries (“Ostrovsky”) equation. Wave Motion, 35, 141155.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., Y. Kanarska, and J. C. McWilliams, 2010a: On the generation and evolution of nonlinear internal waves in the South China Sea. J. Geophys. Res., 115, C02012, doi:10.1029/2009JC005275.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., J. C. McWilliams, and C. R. Jackson, 2010b: East-west asymmetry in nonlinear internal waves from Luzon Strait. J. Geophys. Res., 115, C10057, doi:10.1029/2009JC006004.

    • Search Google Scholar
    • Export Citation
  • Cai, S., X. Long, and Z. Gan, 2002: A numerical study of the generation and propagation of internal solitary waves in the Luzon Strait. Oceanol. Acta, 25, 5160.

    • Search Google Scholar
    • Export Citation
  • Chao, S., D. Ko, R. Lien, and P. Shaw, 2007: Assessing the west ridge of Luzon Strait as an internal wave mediator. J. Oceanogr., 63, 897911.

    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., L. Armi, and S. Vagle, 2006: Upstream internal hydraulic jumps. J. Phys. Oceanogr., 36, 753769.

  • Duda, T. F., J. F. Lynch, J. D. Irish, R. C. Beardsley, S. R. Ramp, C. S. Chiu, T. Y. Tang, and Y. J. Yang, 2004: Internal tide and nonlinear wave behavior in the continental slope in the northern South China Sea. IEEE J. Oceanic Eng., 29, 11051130.

    • Search Google Scholar
    • Export Citation
  • Ebbesmeyer, C. C., C. A. Coomes, R. C. Hamilton, K. A. Kurrus, T. C. Sullivan, B. L. Salem, R. D. Romea, and R. J. Bauer, 1991: New observations on internal waves (solitons) in the South China Sea using an acoustic doppler current profiler. Proc. Marine Technology Society, New Orleans, LA, Marine Technology Society, 165–175.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204.

    • Search Google Scholar
    • Export Citation
  • Farmer, D., Q. Li, and J.-H. Park, 2009: Internal wave observations in the South China Sea: The role of rotation and non-linearity. Atmos.–Ocean, 47, 267280.

    • Search Google Scholar
    • Export Citation
  • Fermi, E., J. Pasta, and S. Ulam, 1974: Studies of nonlinear problems, I. Nonlinear Wave Motion, A. C. Newell, Ed., Lectures in Applied Mathematics, Vol. 15, American Mathematics Society, 143–156.

    • Search Google Scholar
    • Export Citation
  • Galkin, V. N., and Yu. A. Stepanyants, 1991: On the existence of stationary solitary waves in a rotating fluid. J. Appl. Math. Mech., 55, 939943.

    • Search Google Scholar
    • Export Citation
  • Gerkema, T., 1996: A unified model for the generation and fission of internal tides in a rotating ocean. J. Mar. Res.., 54, 421450.

  • Gilman, O. A., R. Grimshaw, and Yu. A. Stepanyants, 1996: Dynamics of internal solitary waves in a rotating fluid. Dyn. Atmos. Oceans, 23, 403411.

    • Search Google Scholar
    • Export Citation
  • Gorshkov, K. A., and L. A. Ostrovsky, 1981: Interactions of solitons in nonintegrable system: Direct perturbation method and applications. Physica D, 3, 428438.

    • Search Google Scholar
    • Export Citation
  • Helfrich, K. R., 2007: Decay and return of internal solitary waves with rotation. J. Phys. Fluids., 19, 026601, doi:10.1063/1.2472509.

  • Helfrich, K. R., and R. H. J. Grimshaw, 2008: Nonlinear disintegration of the internal tide. J. Phys. Oceanogr., 38, 686701.

  • Hibiya, T., 1986: Generation mechanism of internal waves by tidal flow over a sill. J. Geophys. Res., 91, 76977708.

  • Hunter, J. K., 1990: Numerical solutions of some nonlinear dispersive wave equations. Computational Solution of Nonlinear Systems of Equations, E. L. Allgower and K. Georg, Eds., Lectures in Applied Mathematics, Vol. 26, 301–316.

    • Search Google Scholar
    • Export Citation
  • Jackson, C., 2009: Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res., 112, C11012, doi:10.1029/2007JC004220.

    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., and M. A. Merrifield, 2003: Internal tide scattering at seamounts, ridges, and islands. J. Geophys. Res., 108, 3180, doi:10.1029/2002JC001528.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, C.-T. Liu, A. K. Liu, and L. David, 2006: Prototypical solitons in the South China Sea. Geophys. Res. Lett., 33, L11607, doi:10.1029/2006GL025932.

    • Search Google Scholar
    • Export Citation
  • Leonov, A. I., 1981: The effect of Earth rotation on the propagation of weak nonlinear surface and internal long oceanic waves. Ann. N. Y. Acad. Sci., 373, 150159.

    • Search Google Scholar
    • Export Citation
  • Li, Q., 2010: Nonlinear internal waves in the South China Sea. Ph.D. thesis, University of Rhode Island, 307 pp.

  • Li, Q., D. M. Farmer, T. F. Duda, and S. Ramp, 2009: Acoustical measurement of nonlinear internal waves using the inverted echo sounder. J. Atmos. Oceanic Technol., 26, 22282242.

    • Search Google Scholar
    • Export Citation
  • Liu, A. K., Y. S. Chang, M. K. Hsu, and N. K. Liang, 1998: Evolution of nonlinear internal waves in the East and South China Seas. J. Geophys. Res., 103 (C4), 79958008.

    • Search Google Scholar
    • Export Citation
  • National Geophysical Data Center, cited 2006: 2-minute gridded global relief data (ETOPO2v2). National Oceanic and Atmospheric Administration National Geophysical Data Center. [Available online at http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html.]

    • Search Google Scholar
    • Export Citation
  • Ostrovsky, L. A., 1978: Nonlinear internal waves in a rotating ocean. Oceanology, 18, 119125.

  • Plougonven, R., and V. Zeitlin, 2003: On periodic inertia-gravity waves of finite amplitude propagating without change of form at sharp density-gradient interfaces in the rotating fluid. Phys. Lett., 314, 140149.

    • Search Google Scholar
    • Export Citation
  • Ramp, S. R., and Coauthors, 2004: Internal solitons in the northeastern South China Sea. Part I: Sources and deep water propagation. IEEE J. Oceanic Eng., 29, 11571181.

    • Search Google Scholar
    • Export Citation
  • Ramp, S. R., Y. J. Yang, and F. L. Bahr, 2010: Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Processes Geophys., 17, 481498, doi:10.5194/npg-17-481-2010.

    • Search Google Scholar
    • Export Citation
  • Shaw, P.-T., D. S. Ko, and S.-Y. Chao, 2009: Internal solitary waves induced by flow over a ridge: with applications to the northern South China Sea. J. Geophys. Res., 114, C02019, doi:10.1029/2008JC005007.

    • Search Google Scholar
    • Export Citation
  • Stepanyants, Yu. A., 2006: On stationary solutions of the reduced Ostrovsky equation: Periodic waves, compaction and compound solitons. Chaos Solitons Fractals, 28, 193204.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1973: Buoyancy Effects in Fluid. Cambridge University Press, 373 pp.

  • Vlasenko, V., N. Stashchuk, and K. Hutter, 2005: Baroclinic Tides: Theoretical Modeling and Observational Evidence. Cambridge University Press, 351 pp.

    • Search Google Scholar
    • Export Citation
  • Warn-Varnas, A., J. Hawkins, K. G. Lamb, S. Piacsek, S. Chin-Bing, D. King, and G. Burgos, 2010: Solitary wave generation dynamics at Luzon Strait. Ocean Modell., 31, 927, doi:10.1016/j.ocemod.2009.08.002.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., O. B. Fringer, and S. R. Ramp, 2011: Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. J. Geophys. Res., 116, C05022, doi:10.1029/2010JC006424.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., and M. H. Alford, 2006: Source and propagation of internal solitary waves in the northeastern South China Sea. J. Geophys. Res., 111, C11012, doi:10.1029/2006JC003644.

    • Search Google Scholar
    • Export Citation
  • Zheng, Q., R. D. Susanto, C.-R. Ho, Y. T. Song, and Q. Xu, 2007: Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea. J. Geophys. Res., 112, C03021, doi:10.1029/2006JC003551.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 25
PDF Downloads 19 19 19

The Generation and Evolution of Nonlinear Internal Waves in the Deep Basin of the South China Sea

View More View Less
  • 1 Graduate School of Oceanography, University of Rhode Island, Kingston, Rhode Island
Restricted access

Abstract

Time series observations of nonlinear internal waves in the deep basin of the South China Sea are used to evaluate mechanisms for their generation and evolution. Internal tides are generated by tidal currents over ridges in Luzon Strait and steepen as they travel west, subsequently generating high-frequency nonlinear waves. Although nonlinear internal waves appear repeatedly on the western slopes of the South China Sea, their appearance in the deep basin is intermittent and more closely related to the amplitude of the semidiurnal than the predominant diurnal tidal current in Luzon Strait. As the internal tide propagates westward, it evolves under the influence of nonlinearity, rotation, and nonhydrostatic dispersion. The interaction between nonlinearity and rotation transforms the internal tide into a parabolic or corner shape. A fully nonlinear two-layer internal wave model explains the observed characteristics of internal tide evolution in the deep basin for different representative forcing conditions and allows assessment of differences between the fully and weakly nonlinear descriptions. Matching this model to a wave generation solution for representative topography in Luzon Strait leads to predictions in the deep basin consistent with observations. Separation of the eastern and western ridges is close to the internal semidiurnal tidal wavelength, contributing to intensification of the westward propagating semidiurnal component. Doppler effects of internal tide generation, when combined with a steady background flow, suggest an explanation for the apparent suppression of nonlinear wave generation during periods of westward intrusion of the Kuroshio.

Current affiliation: Center for Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.

Corresponding author address: David M. Farmer, Graduate School of Oceanography, University of Rhode Island, South Ferry Road, Kingston, RI 02884. E-mail: dfarmer@gso.uri.edu

Abstract

Time series observations of nonlinear internal waves in the deep basin of the South China Sea are used to evaluate mechanisms for their generation and evolution. Internal tides are generated by tidal currents over ridges in Luzon Strait and steepen as they travel west, subsequently generating high-frequency nonlinear waves. Although nonlinear internal waves appear repeatedly on the western slopes of the South China Sea, their appearance in the deep basin is intermittent and more closely related to the amplitude of the semidiurnal than the predominant diurnal tidal current in Luzon Strait. As the internal tide propagates westward, it evolves under the influence of nonlinearity, rotation, and nonhydrostatic dispersion. The interaction between nonlinearity and rotation transforms the internal tide into a parabolic or corner shape. A fully nonlinear two-layer internal wave model explains the observed characteristics of internal tide evolution in the deep basin for different representative forcing conditions and allows assessment of differences between the fully and weakly nonlinear descriptions. Matching this model to a wave generation solution for representative topography in Luzon Strait leads to predictions in the deep basin consistent with observations. Separation of the eastern and western ridges is close to the internal semidiurnal tidal wavelength, contributing to intensification of the westward propagating semidiurnal component. Doppler effects of internal tide generation, when combined with a steady background flow, suggest an explanation for the apparent suppression of nonlinear wave generation during periods of westward intrusion of the Kuroshio.

Current affiliation: Center for Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.

Corresponding author address: David M. Farmer, Graduate School of Oceanography, University of Rhode Island, South Ferry Road, Kingston, RI 02884. E-mail: dfarmer@gso.uri.edu
Save