• Antenucci, J., and J. Imberger, 2001: Energetics of long internal gravity waves in large lakes. Limnol. Oceanogr., 46, 17601773.

  • Becker, J. J., and Coauthors, 2009: Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geod., 32, 355371.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., Y. Kanarska, and J. C. McWilliams, 2010: On the generation and evolution of nonlinear internal waves in the South China Sea. J. Geophys. Res., 115, C02012, doi:10.1029/2009JC005275.

    • Search Google Scholar
    • Export Citation
  • Cairns, J. L., 1967: Asymmetry of internal tidal waves in shallow coastal waters. J. Geophys. Res., 72, 35633565.

  • Cairns, J. L., and K. W. Nelson, 1970: A description of the seasonal thermocline cycle in shallow coastal water. J. Geophys. Res., 75, 11271131.

    • Search Google Scholar
    • Export Citation
  • Cairns, J. L., and G. O. Williams, 1976: Internal wave observations from a midwater float. J. Geophys. Res., 81, 19431950.

  • Carter, G. S., and Coauthors, 2008: Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J. Phys. Oceanogr., 38, 22052223.

    • Search Google Scholar
    • Export Citation
  • Carton, J., and B. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017.

    • Search Google Scholar
    • Export Citation
  • Csanady, G., 1967: Large-scale motion in the Great Lakes. J. Geophys. Res., 72, 41514162.

  • Cummins, P. F., and L.-Y. Oey, 1997: Simulation of barotropic and baroclinic tides off northern British Columbia. J. Phys. Oceanogr., 27, 762781.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687.

    • Search Google Scholar
    • Export Citation
  • Dong, C., E. Y. Idica, and J. C. McWilliams, 2009: Circulation and multiple-scale variability in the Southern California Bight. Prog. Oceanogr., 82, 168190.

    • Search Google Scholar
    • Export Citation
  • Durski, S. M., S. M. Glenn, and D. B. Haidvogel, 2004: Vertical mixing schemes in the coastal ocean: Comparison of the level 2.5 Mellor-Yamada scheme with an enhanced version of the K profile parameterization. J. Geophys. Res., 109, C01015, doi:10.1029/2002JC001702.

    • Search Google Scholar
    • Export Citation
  • Egbert, G., A. Bennett, and M. Foreman, 1994: TOPEX/Poseidon tides estimated using a global inverse model. J. Geophys. Res., 99, 24 82124 852.

    • Search Google Scholar
    • Export Citation
  • Emery, K. O., 1956: Deep standing internal waves in California basins. Limnol. Oceanogr., 1, 3541.

  • Emery, K. O., and C. G. Gunnerson, 1973: Internal swash and surf. Proc. Natl. Acad. Sci. USA, 70, 23792380.

  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787.

  • Garrett, C., and W. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297.

  • Gelpi, C. G., and K. E. Norris, 2005: Seasonal and high-frequency ocean temperature dynamics at Santa Catalina Island. Proc. Sixth California Islands Symp., Ventura, CA, Institute for Wildlife Studies, 461–471.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and E. Kunze, 1991: Shear and strain in Santa Monica Basin. J. Geophys. Res., 96, 16 70916 719.

  • Hickey, B. M., E. L. Dobbins, and S. E. Allen, 2003: Local and remote forcing of currents and temperature in the central Southern California Bight. J. Geophys. Res., 108, 3081, doi:10.1029/2000JC000313.

    • Search Google Scholar
    • Export Citation
  • Hill-Lindsay, C. R., 2009: Tidal current variability on the San Pedro and Palos Verdes shelves, California. M.S. thesis, Dept. of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 92 pp.

    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., M. A. Merrifield, and P. E. Holloway, 2003: Internal tide scattering at the Line Islands Ridge. J. Geophys. Res., 108, 3365, doi:10.1029/2003JC001844.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., and J. D. Nash, 2010: Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett., 37, L23611, doi:10.1029/2010GL045598.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., J. D. Nash, and E. Kunze, 2010: Internal-tide energy over topography. J. Geophys. Res., 115, C06014, doi:10.1029/2009JC005618.

    • Search Google Scholar
    • Export Citation
  • Kurapov, A. L., J. S. Allen, and G. D. Egbert, 2010: Combined effects of wind-driven upwelling and internal tide on the continental shelf. J. Phys. Oceanogr., 40, 737756.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., and A. Bratkovich, 1995: A tracer study of mixing in the Santa Cruz Basin. J. Geophys. Res., 100, 20 68120 704.

  • Ledwell, J. R., and B. M. Hickey, 1995: Evidence for enhanced boundary mixing in the Santa Monica Basin. J. Geophys. Res., 100, 20 66520 679.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and J. Klymak, 2008: Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. J. Phys. Oceanogr., 38, 19491964.

    • Search Google Scholar
    • Export Citation
  • Lerczak, J. A., C. D. Winant, and M. C. Hendershott, 2003: Observations of the semidiurnal internal tide on the southern California slope and shelf. J. Geophys. Res., 108, 3068, doi:10.1029/2001JC001128.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2003: Equilibrium structure and dynamics of the California Current system. J. Phys. Oceanogr., 33, 753783.

    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, J. Nash, E. Kunze, and M. A. Merrifield, 2007: Diagnosing a partly standing internal wave in Mamala Bay, Oahu. Geophys. Res. Lett., 34, L17604, doi:10.1029/2007GL029749.

    • Search Google Scholar
    • Export Citation
  • Mason, E., J. Molemaker, A. Shchepetkin, F. Colas, J. McWilliams, and P. Sangra, 2010: Procedures for offline grid nesting in regional ocean models. Ocean Modell., 35, 115.

    • Search Google Scholar
    • Export Citation
  • Michalakes, J., J. Dudhia, D. Gill, J. Klemp, and W. Skamarock, 1998: Design of a next-generation regional weather research and forecast model. Proc. Eighth Workshop on the Use of Parallel Processors in Meteorology, Reading, United Kingdom, European Center for Medium Range Weather Forecasting, 117–124.

    • Search Google Scholar
    • Export Citation
  • Müller, P., and X. Liu, 2000: Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies. J. Phys. Oceanogr., 30, 532549.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010.

  • Nash, J. D., E. Kunze, C. M. Lee, and T. B. Sanford, 2006: Structure of the baroclinic tide generated at Kaena Ridge, Hawaii. J. Phys. Oceanogr., 36, 11231135.

    • Search Google Scholar
    • Export Citation
  • Noble, M. A., and J. P. Xu, 2003: Observations of large-amplitude cross-shore internal bores near the shelf break, Santa Monica Bay, CA. Mar. Environ. Res., 56, 127149.

    • Search Google Scholar
    • Export Citation
  • Noble, M. A., B. Jones, P. Hamilton, J. Xu, G. Robertson, L. Rosenfeld, and J. Largier, 2009: Cross-shelf transport into nearshore waters due to shoaling internal tides in San Pedro Bay, CA. Cont. Shelf Res., 29, 17681785.

    • Search Google Scholar
    • Export Citation
  • Pineda, J., 1994: Internal tidal bores in the nearshore: Warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. J. Mar. Res., 52, 427458.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., T. Johnston, G. Carter, M. Merrifield, R. Pinkel, P. Worcester, and B. Dushaw, 2010: Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. J. Phys. Oceanogr., 40, 311325.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2003: A method for computing horizontal pressure-gradient force in an oceanic model with a non-aligned vertical coordinate. J. Geophys. Res., 108, 30903124.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Ocean Modeling System: A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404.

    • Search Google Scholar
    • Export Citation
  • Summers, H. J., and K. O. Emery, 1963: Internal waves of tidal period off Southern California. J. Geophys. Res., 68, 827839.

  • Winant, C. D., and A. W. Bratkovich, 1981: Temperature and currents on the Southern California shelf: A description of the variability. J. Phys. Oceanogr., 11, 7186.

    • Search Google Scholar
    • Export Citation
  • Zilberman, N. V., J. M. Becker, M. A. Merrifield, and G. S. Carter, 2009: Model estimates of M2 internal tide generation over Mid-Atlantic Ridge topography. J. Phys. Oceanogr., 39, 26352651.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 356 152 18
PDF Downloads 242 116 13

Modeling Semidiurnal Internal Tide Variability in the Southern California Bight

M. C. BuijsmanInstitute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by M. C. Buijsman in
Current site
Google Scholar
PubMed
Close
,
Y. UchiyamaInstitute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by Y. Uchiyama in
Current site
Google Scholar
PubMed
Close
,
J. C. McWilliamsInstitute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by J. C. McWilliams in
Current site
Google Scholar
PubMed
Close
, and
C. R. Hill-LindsayInstitute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by C. R. Hill-Lindsay in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Regional Oceanic Modeling System (ROMS) is applied in a nested configuration with realistic forcing to the Southern California Bight (SCB) to analyze the variability in semidiurnal internal wave generation and propagation. The SCB has a complex topography with supercritical slopes that generate linear internal waves at the forcing frequency. The model predicts the observed barotropic and baroclinic tides reasonably well, although the observed baroclinic tides feature slightly larger amplitudes. The strongest semidiurnal barotropic to baroclinic energy conversion occurs on a steep sill slope of the 1900-m-deep Santa Cruz Basin. This causes a forced, near-resonant, semidiurnal Poincaré wave that rotates clockwise in the basin and is of the first mode along the radial, azimuthal, and vertical directions. The associated tidal-mean, depth-integrated energy fluxes and isotherm oscillation amplitudes in the basin reach maximum values of about 5 kW m−1 and 100 m and are strongly modulated by the spring–neap cycle. Most energy is locally dissipated, and only 10% escapes the basin. The baroclinic energy in the remaining basins is orders of magnitudes smaller. High-resolution coastal models are important in locating overlooked mixing hotspots such as the Santa Cruz Basin. These mixing hotspots may be important for ocean mixing and the overturning circulation.

Current affiliation: Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey.

Corresponding author address: M. C. Buijsman, Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton, NJ 08540-6649. E-mail: buijsman@princeton.edu

Abstract

The Regional Oceanic Modeling System (ROMS) is applied in a nested configuration with realistic forcing to the Southern California Bight (SCB) to analyze the variability in semidiurnal internal wave generation and propagation. The SCB has a complex topography with supercritical slopes that generate linear internal waves at the forcing frequency. The model predicts the observed barotropic and baroclinic tides reasonably well, although the observed baroclinic tides feature slightly larger amplitudes. The strongest semidiurnal barotropic to baroclinic energy conversion occurs on a steep sill slope of the 1900-m-deep Santa Cruz Basin. This causes a forced, near-resonant, semidiurnal Poincaré wave that rotates clockwise in the basin and is of the first mode along the radial, azimuthal, and vertical directions. The associated tidal-mean, depth-integrated energy fluxes and isotherm oscillation amplitudes in the basin reach maximum values of about 5 kW m−1 and 100 m and are strongly modulated by the spring–neap cycle. Most energy is locally dissipated, and only 10% escapes the basin. The baroclinic energy in the remaining basins is orders of magnitudes smaller. High-resolution coastal models are important in locating overlooked mixing hotspots such as the Santa Cruz Basin. These mixing hotspots may be important for ocean mixing and the overturning circulation.

Current affiliation: Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey.

Corresponding author address: M. C. Buijsman, Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton, NJ 08540-6649. E-mail: buijsman@princeton.edu
Save