• Aagaard, K., 1989: A synthesis of the Arctic Ocean circulation. Rapp. P.-V. Reun. Cons. Int. Explor. Mer, 188, 1122.

  • Carmack, E. C., R. W. Macdonald, R. G. Perkin, F. A. McLaughlin, and R. J. Pearson, 1995: Evidence for warming of Atlantic water in the Southern Canadian Basin of the Arctic Ocean: Results from the Larsen-93 expedition. Geophys. Res. Lett., 22, 10611064.

    • Search Google Scholar
    • Export Citation
  • Dmitrenko, I. A., and Coauthors, 2008: Toward a warmer Arctic Ocean: Spreading of the early 21st century Atlantic Water warm anomaly along the Eurasian Basin margins. J. Geophys. Res., 113, C05023, doi:10.1029/2007JC004158.

    • Search Google Scholar
    • Export Citation
  • Fedorov, K. N., and A. I. Ginsburg, 1992: The Near-Surface Layer of the Ocean. VSP, 259 pp.

  • Fer, I., 2009: Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmos. Oceanic Sci. Lett., 2, 148152.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., 1989: Oceanographic implications of laboratory experiments on diffusive interfaces. J. Phys. Oceanogr., 19, 17071715.

    • Search Google Scholar
    • Export Citation
  • Howard, S. L., J. Hyatt, and L. Padman, 2004: Mixing in the pycnocline over the western Antarctic Peninsula shelf during Southern Ocean GLOBEC. Deep-Sea Res. II, 51, 1965, doi:10.1016/j.dsr2.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Inoue, R., H. Yamazaki, F. Wolk, T. Kono, and J. Yoshida, 2007: An estimation of buoyancy flux for a mixture of turbulence and double diffusion. J. Phys. Oceanogr., 37, 611623.

    • Search Google Scholar
    • Export Citation
  • Ivanov, V. V., and Coauthors, 2009: Seasonal variability in Atlantic Water off Spitsbergen. Deep-Sea Res. I, 56, 114.

  • Kelley, D., 1984: Effective diffusivities within oceanic thermohaline staircases. J. Geophys. Res., 89 (C6), 10 48410 488.

  • Kelley, D., 1990: Fluxes through diffusive staircases: A new formulation. J. Geophys. Res., 95, 33653371.

  • Kelley, D., H. J. S. Fernando, A. E. Gargett, J. Tanny, and E. Özsoy, 2003: The diffusive regime of double-diffusive convection. Prog. Oceanogr., 56, 461481.

    • Search Google Scholar
    • Export Citation
  • Krishfield, R. A., and D. K. Perovich, 2005: Spatial and temporal variability of oceanic heat flux to the Arctic ice pack. J. Geophys. Res., 110, C07021, doi:10.1029/2004JC002293.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2003: A review of oceanic salt fingering theory. Prog. Oceanogr., 56, 399417.

  • Kwok, R., and N. Untersteiner, 2011: The thinning of Arctic sea ice. Phys. Today, 64, 3641.

  • Lenn, Y.-D., and Coauthors, 2009: Vertical mixing at intermediate depths in the Arctic boundary current. Geophys. Res. Lett., 36, L05601, doi:10.1029/2008GL036792.

    • Search Google Scholar
    • Export Citation
  • Linden, P. F., and T. G. L. Shirtcliffe, 1978: The diffusive interface in double diffusive convection. J. Fluid Mech., 87, 417432.

  • Marmorino, G. O., and D. R. Caldwell, 1976: Heat and salt transport through a diffusive thermohaline interface. Deep-Sea Res., 23, 5967.

    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., and M. Steele, 2001: Future of the Arctic sea ice cover: Implications of an Antarctic analog. Geophys. Res. Lett., 28, 307310.

    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., and M. G. McPhee, 1995: Solar heating of the Arctic mixed layer. J. Geophys. Res., 100, 24 69124 703.

  • McPhee, M. G., T. Kikuchi, J. H. Morison, and T. P. Stanton, 2003: Ocean-to-ice heat flux at the North Pole environmental observatory. Geophys. Res. Lett., 30, 2274, doi:10.1029/2003GL018580.

    • Search Google Scholar
    • Export Citation
  • Melling, H., R. A. Lake, D. R. Topham, and D. B. Fissel, 1984: Oceanic thermal structure in the western Canadian Arctic. Cont. Shelf Res., 3, 233258.

    • Search Google Scholar
    • Export Citation
  • Padman, L., 1994: Momentum fluxes through sheared oceanic thermohaline steps. J. Geophys. Res., 99, 22 49122 499.

  • Padman, L., 1995: Small-scale physical processes in the Arctic Ocean. Arctic Oceanography: Marginal Ice Zones and Continental Shelves, W. O. Smith and J. M. Grebmeier, Eds., Coastal and Estuarine Studies, Vol. 49, Smith, Amer. Geophys. Union, 97–129.

    • Search Google Scholar
    • Export Citation
  • Padman, L., and T. M. Dillon, 1987: Vertical heat fluxes through the Beaufort Sea thermohaline staircase. J. Geophys. Res., 92 (C10), 10 79910 806.

    • Search Google Scholar
    • Export Citation
  • Padman, L., and T. M. Dillon, 1989: Thermal microstructure and internal waves in the Canada Basin diffusive staircase. Deep-Sea Res., 36A, 531542.

    • Search Google Scholar
    • Export Citation
  • Padman, L., and T. M. Dillon, 1991: Turbulent mixing near the Yermak Plateau during the Coordinated Eastern Arctic Experiment. J. Geophys. Res., 96 (C3), 47694782.

    • Search Google Scholar
    • Export Citation
  • Padman, L., and S. Erofeeva, 2004: A barotropic inverse tidal model for the Arctic Ocean. Geophys. Res. Lett., 31, L02303, doi:10.1029/2003GL019003.

    • Search Google Scholar
    • Export Citation
  • Perkin, R. G., and E. L. Lewis, 1984: Mixing in the West Spitsbergen Current. J. Phys. Oceanogr., 14, 13151325.

  • Perovich, D. K., B. Light, H. Eicken, K. F. Jones, K. Runciman, and S. V. Nghiem, 2007: Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophys. Res. Lett., 34, L19505, doi:10.1029/2007GL031480.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., J. A. Richter-Menge, K. F. Jones, and B. Light, 2008: Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35, L11501, doi:10.1029/2008GL034007.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2005: One more step toward a warmer Arctic. Geophys. Res. Lett., 32, L17605, doi:10.1029/2005GL023740.

  • Polyakov, I. V., and Coauthors, 2010: Arctic Ocean warming contributes to reduced polar ice cap. J. Phys. Oceanogr., 40, 27432756.

  • Polyakov, I. V., and Coauthors, 2011: Fate of early 2000s Arctic warm water pulse. Bull. Amer. Meteor. Soc., 92, 561566.

  • Quadfasel, D. A., A. Sy, D. Wells, and A. Tunik, 1991: Warming in the Arctic. Nature, 350, 385.

  • Radko, T., 2005: What determines the thickness of layers in a thermohaline staircase? J. Fluid Mech., 523, 7998.

  • Radko, T., 2007: Mechanics of merging events for a series of layers in a stratified turbulent fluid. J. Fluid Mech., 577, 251273.

  • Rainville, L., and P. Winsor, 2008: Mixing across the Arctic Ocean: Microstructure observations during the Beringia 2005 Expedition. Geophys. Res. Lett., 35, L08606, doi:10.1029/2008GL033532.

    • Search Google Scholar
    • Export Citation
  • Robertson, R., L. Padman, and M. D. Levine, 1995: Fine structure, microstructure, and vertical mixing processes in the upper ocean in the western Weddell Sea. J. Geophys. Res., 100 (C9), 18 51718 535.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., E. P. Jones, L. G. Anderson, and G. Kattner, 1994: On the intermediate depth waters of the Arctic Ocean. The Polar Oceans and Their Role in Shaping the Global Environment: The Nansen Centennial Volume, Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 33–46.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., L. G. Anderson, and E. P. Jones, 1996: Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. J. Geophys. Res., 101, 88078821.

    • Search Google Scholar
    • Export Citation
  • Schauer, U., E. Fahrbach, S. Osterhus, and G. Rohardt, 2004: Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements. J. Geophys. Res., 109, C06026, doi:10.1029/2003JC001823.

    • Search Google Scholar
    • Export Citation
  • Schauer, U., A. Beszczynska-Möller, W. Walczowski, E. Fahrbach, J. Piechura, and E. Hansen, 2008: Variation of flow through the Fram Strait to the Arctic Ocean between 1997 and 2006. Arctic–Subarctic Ocean Fluxes, B. Dickson, J. Meincke, and P. Rhines, Eds., Springer, 65–85.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1995: The salt finger experiments of Jevons (1857) and Rayleigh (1880). J. Phys. Oceanogr., 25, 817.

  • Schmitt, R. W., 2003: Observational and laboratory insights into salt finger convection. Prog. Oceanogr., 56 (3–4), 419433.

  • Shaw, W. J., T. P. Stanton, M. G. McPhee, J. H. Morison, and D. G. Martinson, 2009: Role of the upper ocean in the energy budget of Arctic sea ice during SHEBA. J. Geophys. Res., 114, C06012, doi:10.1029/2008JC004991.

    • Search Google Scholar
    • Export Citation
  • Sirevaag, A., and I. Fer, 2009: Early spring oceanic heat fluxes and mixing observed from drift stations north of Svalbard. J. Phys. Oceanogr., 39, 30493069.

    • Search Google Scholar
    • Export Citation
  • Steele, M., and T. Boyd, 1998: Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res., 103, 10 41910 435.

  • Stern, M. E., 1960: The ‘salt-fountain’ and thermohaline convection. Tellus, 2, 172175.

  • Timmermans, M.-L., J. Toole, R. Krishfield, and P. Winsor, 2008: Ice-Tethered Profiler observations of the double-diffusive staircase in the Canada Basin thermocline. J. Geophys. Res., 113, C00A02, doi:10.1029/2008JC004829.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., M.-L. Timmermans, D. K. Perovich, R. A. Krishfield, A. Proshutinsky, and J. A. Richter-Menge, 2010: Influences of the ocean surface mixed layer and thermohaline stratification on arctic sea ice in the central Canada Basin. J. Geophys. Res., 115, C10018, doi:10.1029/2009JC005660.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 368 pp.

  • Washburn, L., T. F. Duda, and D. C. Jacobs, 1996: Interpreting conductivity microstructure: Estimating the temperature variance dissipation rate. J. Atmos. Oceanic Technol., 13, 11661188.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 276 87 14
PDF Downloads 172 73 7

Mooring-Based Observations of Double-Diffusive Staircases over the Laptev Sea Slope

Igor V. PolyakovInternational Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Igor V. Polyakov in
Current site
Google Scholar
PubMed
Close
,
Andrey V. PnyushkovInternational Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Andrey V. Pnyushkov in
Current site
Google Scholar
PubMed
Close
,
Robert RemberInternational Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Robert Rember in
Current site
Google Scholar
PubMed
Close
,
Vladimir V. IvanovInternational Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Vladimir V. Ivanov in
Current site
Google Scholar
PubMed
Close
,
Y.-D. LennSchool of Ocean Sciences, Bangor University, Menai Bridge, United Kingdom

Search for other papers by Y.-D. Lenn in
Current site
Google Scholar
PubMed
Close
,
Laurie PadmanEarth & Space Research, Corvallis, Oregon

Search for other papers by Laurie Padman in
Current site
Google Scholar
PubMed
Close
, and
Eddy C. CarmackFisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, British Columbia, Canada

Search for other papers by Eddy C. Carmack in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A yearlong time series from mooring-based high-resolution profiles of water temperature and salinity from the Laptev Sea slope (2003–04; 2686-m depth; 78°26′N, 125°37′E) shows six remarkably persistent staircase layers in the depth range of ~140–350 m encompassing the upper Atlantic Water (AW) and lower halocline. Despite frequent displacement of isopycnal surfaces by internal waves and eddies and two strong AW warming pulses that passed through the mooring location in February and late August 2004, the layers preserved their properties. Using laboratory-derived flux laws for diffusive convection, the authors estimate the time-averaged diapycnal heat fluxes across the four shallower layers overlying the AW core to be ~8 W m−2. Temporal variability of these fluxes is strong, with standard deviations of ~3–7 W m−2. These fluxes provide a means for effective transfer of AW heat upward over more than a 100-m depth range toward the upper halocline. These findings suggest that double diffusion is an important mechanism influencing the oceanic heat fluxes that help determine the state of Arctic sea ice.

ESR Publication Number 144.

Corresponding author address: Igor V. Polyakov, University of Alaska Fairbanks, International Arctic Research Center, 930 Koyukuk Drive, Fairbanks, AK 99775. E-mail: igor@iarc.uaf.edu

Abstract

A yearlong time series from mooring-based high-resolution profiles of water temperature and salinity from the Laptev Sea slope (2003–04; 2686-m depth; 78°26′N, 125°37′E) shows six remarkably persistent staircase layers in the depth range of ~140–350 m encompassing the upper Atlantic Water (AW) and lower halocline. Despite frequent displacement of isopycnal surfaces by internal waves and eddies and two strong AW warming pulses that passed through the mooring location in February and late August 2004, the layers preserved their properties. Using laboratory-derived flux laws for diffusive convection, the authors estimate the time-averaged diapycnal heat fluxes across the four shallower layers overlying the AW core to be ~8 W m−2. Temporal variability of these fluxes is strong, with standard deviations of ~3–7 W m−2. These fluxes provide a means for effective transfer of AW heat upward over more than a 100-m depth range toward the upper halocline. These findings suggest that double diffusion is an important mechanism influencing the oceanic heat fluxes that help determine the state of Arctic sea ice.

ESR Publication Number 144.

Corresponding author address: Igor V. Polyakov, University of Alaska Fairbanks, International Arctic Research Center, 930 Koyukuk Drive, Fairbanks, AK 99775. E-mail: igor@iarc.uaf.edu
Save