• Bourke, R. H., and A. R. Parsons, 1993: Ambient noise characteristics of the northwestern Barents Sea. J. Acoust. Soc. Amer., 94, 27992808.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., and D. C. Chapman, 1987: Programs for computing properties of coastal-trapped waves and wind-driven motions over the continental shelf and slope. 2nd ed. Woods Hole Oceanographic Institute Tech. Rep. WHOI-87-24, 46 pp.

    • Search Google Scholar
    • Export Citation
  • Caldwell, D. R., and M. S. Longuet-Higgins, 1972: The experimental generation of double Kelvin waves. Proc. Roy. Soc. London, 326A, 3952.

    • Search Google Scholar
    • Export Citation
  • Carbajal, N., 2004: A note on tidal current rotation. Ocean Dyn., 54, 531536, doi:10.1007/s10236-004-0097-4.

  • Chapman, D. C., 1989: Enhanced subinertial diurnal tides over isolated topographic features. Deep-Sea Res., 36, 815824.

  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Sock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., J. Y. Cherniawsky, and M. G. G. Foreman, 2001: North Pacific internal tides from the Aleutian Ridge: Altimeter observations and modeling. J. Mar. Res., 59, 167191.

    • Search Google Scholar
    • Export Citation
  • Dale, A. C., J. M. Huthnance, and T. J. Sherwin, 2001: Coastal-trapped internal waves and tides at near-inertial frequencies. J. Phys. Oceanogr., 31, 29582970.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and J. H. Morison, 1992: Internal waves and mixing in the Arctic Ocean. Deep-Sea Res., 39, S459S484.

  • Dmitrenko, I. A., S. A. Kirillov, V. V. Ivanov, and R. A. Woodgate, 2008: Mesoscale Atlantic water eddy off the Laptev Sea continental slope carries the signature of upstream interaction. J. Geophys. Res., 113, C07005, doi:10.1029/2007JC004491.

    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., and P. F. Worcester, 1998: Resonant diurnal internal tides in the North Atlantic. Geophys. Res. Lett., 25, 21892192.

  • Emery, W. J., and R. E. Thompson, 2001: Data Analysis Methods in Physical Oceanography. 2nd ed. Elsevier Science, 658 pp.

  • Foldvik, A., J. H. Middleton, and T. D. Foster, 1990: The tides of the southern Weddell Sea. Deep-Sea Res., 37, 13451362.

  • Foreman, M. G. G., 1978: Manual for tidal currents analysis and prediction. Institute of Ocean Sciences, Patricia Bay Pacific Marine Science Rep. 78-6, 65 pp.

    • Search Google Scholar
    • Export Citation
  • Gammelsrød, T., and B. Rudels, 1983: Hydrographic and current measurements in the Fram Strait, August 1981. Polar Res., 1, 115126.

  • Gonella, J., 1972: A rotary-component method for analyzing meteorological and oceanographic vector time series. Deep-Sea Res., 19, 833846.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., and A. Proshutinsky, 2007: Role of tides in Arctic ocean/ice climate. J. Geophys. Res., 112, C04S06, doi:10.1029/2006JC003643.

    • Search Google Scholar
    • Export Citation
  • Howarth, M. J., 1998: The effect of stratification on tidal current profiles. Cont. Shelf Res., 18, 12351254.

  • Hunkins, K., 1986: Anomalous diurnal tidal currents on the Yermak Plateau. J. Mar. Sci., 44, 5169.

  • Huthnance, J. M., 1975: On trapped waves over a continental shelf. J. Fluid Mech., 69, 689704.

  • Ke, Z., and A. E. Yankovsky, 2010: The hybrid Kelvin–edge wave and its role in tidal dynamics. J. Phys. Oceanogr., 40, 27572767.

  • Kowalik, Z., and A. Y. Proshutinsky, 1994: The Arctic Ocean tides. The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 137–158.

    • Search Google Scholar
    • Export Citation
  • Kulikov, E. A., A. B. Rabinovich, and E. C. Carmack, 2004: Barotropic and baroclinic tidal currents on the Mackenzie shelf break in the southeastern Beaufort Sea. J. Geophys. Res., 109, C05020, doi:10.1029/2003JC001986.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., G. F. Cunningham, and W. D. Hibler III, 2003: Sub-daily sea ice motion and deformation from RADARSAT observations. Geophys. Res. Lett., 30, 2218, doi:10.1029/2003GL018723.

    • Search Google Scholar
    • Export Citation
  • Lenn, Yu.-D., T. P. Rippeth, C. P. Old, S. Backon, I. Polyakov, V. Ivanov, and J. Hölemann, 2011: Intermittent intense turbulent mixing under ice in the Laptev Sea continental shelf. J. Phys. Oceanogr., 41, 531547.

    • Search Google Scholar
    • Export Citation
  • Maslanik, J., and J. Stroeve, cited 2010: Near-real-time DMSP SSM/I-SSMIS daily polar gridded sea ice concentrations. National Snow and Ice Data Center. [Available online at http://nsidc.org/data/docs/daac/nsidc0081_ssmi_nrt_seaice.gd.html.]

    • Search Google Scholar
    • Export Citation
  • Munk, W., 1997: Once again: Once again—Tidal friction. Prog. Oceanogr., 40, 735.

  • Munk, W., and K. Hasselmann, 1964: Super-resolution of tides. Studies in Oceanography, K. Yoshida, Ed., University of Tokyo Press, 339–344.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and N. Phillips, 1968: Coherence and band structure of inertial motion in the sea. Rev. Geophys., 6, 447472.

  • Munk, W., F. Snodgrass, and M. Wimbush, 1970: Tides off-shore: Transition from California coastal to deep-sea water. Geophys. Fluid Dyn., 1, 161235.

    • Search Google Scholar
    • Export Citation
  • Murty, T. S., 1985: Modification of hydrographic characteristics, tides, and normal modes by ice cover. Mar. Geod., 9, 451468.

  • Mysak, L. A., 1980: Recent advances in shelf wave dynamics. Rev. Geophys. Space Phys., 18, 211241.

  • Padman, L., and S. Erofeeva, 2004: A barotropic inverse tidal model for the Arctic Ocean. Geophys. Res. Lett., 31, L02303, doi:10.1029/2003GL019003.

    • Search Google Scholar
    • Export Citation
  • Padman, L., A. J. Plueddemann, R. D. Muench, and R. Pinkel, 1992: Diurnal tides near the Yermak Plateau. J. Geophys. Res., 97, 12 63912 652.

    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis with errors in Matlab using t-tide. Comput. Geosci., 28, 929937.

    • Search Google Scholar
    • Export Citation
  • Pease, C. H., P. Turet, R. S. Pritchard, and J. E. Overland, 1994: Barents Sea tidal, wind drift, and inertial motion from ARGOS ice buoys during CEAREX. CEAREX Rep., 134 pp.

    • Search Google Scholar
    • Export Citation
  • Pease, C. H., P. Turet, and R. S. Pritchard, 1995: Barents Sea tidal and inertial motions from Argos ice buoys during the Coordinated Eastern Arctic Experiment. J. Geophys. Res., 100 (C12), 24 70524 718.

    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., 1992: Internal wave observations from the Arctic Environmental Drifting Buoy. J. Geophys. Res., 97, 1261912638.

  • Prinsenberg, S. J., 1988: Damping and phase advance of the tide in western Hudson Bay by the annual ice cover. J. Phys. Oceanogr., 18, 17441751.

    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A. Yu., 1988: Modeling seasonal fluctuations of the level of the Arctic Ocean. Sov. Meteor. Hydrol., 2, 3946.

  • Rainville, L., and R. A. Woodgate, 2009: Observations of internal wave generation in the seasonally ice-free Arctic. Geophys. Res. Lett., 36, L23604, doi:10.1029/2009GL041291.

    • Search Google Scholar
    • Export Citation
  • Robertson, R., 2001: Internal tides and baroclinicity in the southern Weddell Sea: Part II: Effects of the critical latitude and stratification. J. Geophys. Res., 106, 2701727034.

    • Search Google Scholar
    • Export Citation
  • Shepard, D., 1968: A two-dimensional interpolation function for irregularly-spaced data. Proc. 23rd ACM National Conf., New York, NY, ACM, 517–524, doi:10.1145/800186.810616.

    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morfley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 20792087.

    • Search Google Scholar
    • Export Citation
  • St-Laurent, P., F. J. Saucier, and J.-F. Dumais, 2008: On the modification of tides in a seasonally ice-covered sea. J. Geophys. Res., 113, C11014, doi:10.1029/2007JC004614.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., 1926: Dynamics of Tides on the North-Siberian Shelf: Results from the Maud Expedition. Vol. 6, Geofysiske Publikasjoner, Grondahl, 75 pp.

    • Search Google Scholar
    • Export Citation
  • Wang, M., and J. E. Overland, 2009: A sea ice free summer Arctic within 30 years? Geophys. Res. Lett., 36, L07502, doi:10.1029/2009GL037820.

    • Search Google Scholar
    • Export Citation
  • Wilcoxon, F., 1945: Individual comparisons by ranking method. Biom. Bull., 1, 8083.

  • Wunsch, C., 1975: Internal tides in the ocean. Rev. Geophys. Space Phys., 13, 167182.

  • Zubov, N. N., 1945: Arctic Ice (in Russian). Izdatelstvo Glavsevmorputi, 350 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 152 47 10
PDF Downloads 125 59 19

Observations of Tidally Induced Currents over the Continental Slope of the Laptev Sea, Arctic Ocean

A. V. PnyushkovInternational Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by A. V. Pnyushkov in
Current site
Google Scholar
PubMed
Close
and
I. V. PolyakovInternational Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by I. V. Polyakov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two year-long (2004–05 and 2005–06) records of currents from two moorings deployed at the continental slope of the Laptev Sea (78°26′N, 125°40′E) are used in order to define the properties of tidal currents in the upper ~200-m ocean layer. Harmonic and spectral analyses of currents showed that the semidiurnal tidal constituent S2 dominates over the semidiurnal M2 and diurnal constituents. This dominance of the S2 constituent in the tidal currents is due to resonant interaction of the superinertial wave with sloping bottom topography. In contrast to the tidal currents, sea level changes are dominated by the M2 constituent, as seen from a tidal model by L. Padman and S. Erofeeva, using assimilation of observational data. Strong anticorrelation (−0.73 ± 0.05) was found between the upper 50-m S2 current amplitudes and local sea ice concentration, with fourfold (from ~2.0 to 8.5 cm s−1) amplification of tidal currents under ice-free conditions. This is probably due to a change of local resonance conditions for the S2 tidal current. These findings may be important for understanding the increasing role of tides in a seasonally ice-free Arctic Ocean.

Corresponding author address: A. V. Pnyushkov, International Arctic Research Center, University of Alaska Fairbanks, 930 Koyukuk Dr., P.O. Box 757340, Fairbanks, AK 99775. E-mail: andrey@iarc.uaf.edu

Abstract

Two year-long (2004–05 and 2005–06) records of currents from two moorings deployed at the continental slope of the Laptev Sea (78°26′N, 125°40′E) are used in order to define the properties of tidal currents in the upper ~200-m ocean layer. Harmonic and spectral analyses of currents showed that the semidiurnal tidal constituent S2 dominates over the semidiurnal M2 and diurnal constituents. This dominance of the S2 constituent in the tidal currents is due to resonant interaction of the superinertial wave with sloping bottom topography. In contrast to the tidal currents, sea level changes are dominated by the M2 constituent, as seen from a tidal model by L. Padman and S. Erofeeva, using assimilation of observational data. Strong anticorrelation (−0.73 ± 0.05) was found between the upper 50-m S2 current amplitudes and local sea ice concentration, with fourfold (from ~2.0 to 8.5 cm s−1) amplification of tidal currents under ice-free conditions. This is probably due to a change of local resonance conditions for the S2 tidal current. These findings may be important for understanding the increasing role of tides in a seasonally ice-free Arctic Ocean.

Corresponding author address: A. V. Pnyushkov, International Arctic Research Center, University of Alaska Fairbanks, 930 Koyukuk Dr., P.O. Box 757340, Fairbanks, AK 99775. E-mail: andrey@iarc.uaf.edu
Save