Impact of Tropical Cyclones on the Heat Budget of the South Pacific Ocean

S. Jullien * Laboratoire d’Etudes en Géophysique et Océanographie Spatiale, LEGOS/OMP/CNES/CNRS/IRD/University of Toulouse, Toulouse, France

Search for other papers by S. Jullien in
Current site
Google Scholar
PubMed
Close
,
C. E. Menkes Institut de Recherche pour le Développement, Nouméa, New Caledonia, and Laboratoire d’Océanographie et du Climat: Expérimentation et Approches Numériques, LOCEAN/UPMC/CNRS/IRD/MNHN, Paris, France

Search for other papers by C. E. Menkes in
Current site
Google Scholar
PubMed
Close
,
P. Marchesiello * Laboratoire d’Etudes en Géophysique et Océanographie Spatiale, LEGOS/OMP/CNES/CNRS/IRD/University of Toulouse, Toulouse, France

Search for other papers by P. Marchesiello in
Current site
Google Scholar
PubMed
Close
,
N. C. Jourdain Laboratoire des Ecoulements Géophysiques et Industriels, Grenoble, France

Search for other papers by N. C. Jourdain in
Current site
Google Scholar
PubMed
Close
,
M. Lengaigne Laboratoire d’Océanographie et du Climat: Expérimentation et Approches Numériques, LOCEAN/UPMC/CNRS/IRD/MNHN, Paris, France, and National Institute of Oceanography, Goa, India

Search for other papers by M. Lengaigne in
Current site
Google Scholar
PubMed
Close
,
A. Koch-Larrouy * Laboratoire d’Etudes en Géophysique et Océanographie Spatiale, LEGOS/OMP/CNES/CNRS/IRD/University of Toulouse, Toulouse, France

Search for other papers by A. Koch-Larrouy in
Current site
Google Scholar
PubMed
Close
,
J. Lefèvre Laboratoire d’Etudes en Géophysique et Océanographie Spatiale, LEGOS/OMP/CNES/CNRS/IRD/University of Toulouse, Toulouse, France, and Institut de Recherche pour le Développement, Nouméa, New Caledonia

Search for other papers by J. Lefèvre in
Current site
Google Scholar
PubMed
Close
,
E. M. Vincent ** Laboratoire d’Océanographie et du Climat: Expérimentation et Approches Numériques, LOCEAN/UPMC/CNRS/IRD/MNHN, Paris, France

Search for other papers by E. M. Vincent in
Current site
Google Scholar
PubMed
Close
, and
V. Faure Laboratoire d’Océanographie Physique et Biogéochimique, Marseille, France

Search for other papers by V. Faure in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study investigates the integrated ocean response to tropical cyclones (TCs) in the South Pacific convergence zone through a complete ocean heat budget. The TC impact analysis is based on the comparison between two long-term (1979–2003) oceanic simulations forced by a mesoscale atmospheric model solution in which extreme winds associated with cyclones are either maintained or filtered. The simulations provide a statistically robust experiment that fills a gap in the current modeling literature between coarse-resolution and short-term studies. The authors’ results show a significant thermal response of the ocean to at least 500-m depth, driven by competing mixing and upwelling mechanisms. As suggested in previous studies, vertical mixing largely explains surface cooling induced by TCs. However, TC-induced upwelling of deeper waters plays an unexpected role as it partly balances the warming of subsurface waters induced by vertical mixing. Below 100 m, vertical advection results in cooling that persists long after the storm passes and has a signature in the ocean climatology. The heat lost through TC-induced vertical advection is exported outside the cyclogenesis area with strong interannual variability. In addition, 60% of the heat input below the surface during the cyclone season is released back to the oceanic mixed layer through winter entrainment and then to the atmosphere. Therefore, seasonal modulation reduces the mean surface heat flux due to TCs to about 3 × 10−3 PW in this region exposed to 10%–15% of the world’s cyclones. The resulting climatological anomaly is a warming of about 0.1°C in the subsurface layer and cooling below the thermocline (less than 0.1°C).

Corresponding author address: Swen Jullien, LEGOS, 14 avenue Edouard Belin, 31400 Toulouse, France. E-mail: swen.jullien@gmail.com

Abstract

The present study investigates the integrated ocean response to tropical cyclones (TCs) in the South Pacific convergence zone through a complete ocean heat budget. The TC impact analysis is based on the comparison between two long-term (1979–2003) oceanic simulations forced by a mesoscale atmospheric model solution in which extreme winds associated with cyclones are either maintained or filtered. The simulations provide a statistically robust experiment that fills a gap in the current modeling literature between coarse-resolution and short-term studies. The authors’ results show a significant thermal response of the ocean to at least 500-m depth, driven by competing mixing and upwelling mechanisms. As suggested in previous studies, vertical mixing largely explains surface cooling induced by TCs. However, TC-induced upwelling of deeper waters plays an unexpected role as it partly balances the warming of subsurface waters induced by vertical mixing. Below 100 m, vertical advection results in cooling that persists long after the storm passes and has a signature in the ocean climatology. The heat lost through TC-induced vertical advection is exported outside the cyclogenesis area with strong interannual variability. In addition, 60% of the heat input below the surface during the cyclone season is released back to the oceanic mixed layer through winter entrainment and then to the atmosphere. Therefore, seasonal modulation reduces the mean surface heat flux due to TCs to about 3 × 10−3 PW in this region exposed to 10%–15% of the world’s cyclones. The resulting climatological anomaly is a warming of about 0.1°C in the subsurface layer and cooling below the thermocline (less than 0.1°C).

Corresponding author address: Swen Jullien, LEGOS, 14 avenue Edouard Belin, 31400 Toulouse, France. E-mail: swen.jullien@gmail.com
Save
  • Bao, J. W., J. M. Wilczak, J. K. Choi, and L. H. Kantha, 2000: Numerical simulations of air–sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 21902210.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, and Y. Kurihara, 1993: Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98, 23 24523 263.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250.

    • Search Google Scholar
    • Export Citation
  • Chang, S. W., and R. A. Anthes, 1978: Numerical simulations of oceans non-linear, baroclinic response to translating hurricanes. J. Phys. Oceanogr., 8, 468480.

    • Search Google Scholar
    • Export Citation
  • Couvelard, X., P. Marchesiello, L. Gourdeau, and J. Lefevre, 2008: Barotropic zonal jets induced by islands in the southwest Pacific. J. Phys. Oceanogr., 38, 21852204.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2003: The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33, 561579.

  • D’Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill, 2007: Cold wake of Hurricane Frances. Geophys. Res. Lett., 34, L15609, doi:10.1029/2007GL030160.

    • Search Google Scholar
    • Export Citation
  • De Boyer Montégut, C. D., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2001: Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res., 106, 14 77114 781.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 1983: On the response of the ocean to a moving storm—The non-linear dynamics. J. Phys. Oceanogr., 13, 357367.

  • Halliwell, G. R., Jr., L. K. Shay, J. K. Brewster, and W. J. Teague, 2011: Evaluation and sensitivity analysis of an ocean model response to Hurricane Ivan. Mon. Wea. Rev., 139, 921945.

    • Search Google Scholar
    • Export Citation
  • Huang, P. S., T. B. Sanford, and J. Imberger, 2009: Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004). J. Geophys. Res., 114, C12023, doi:10.1029/2009JC005603.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., and L. K. Shay, 2003: The role of oceanic mesoscale features on the tropical cyclone-induced mixed layer response: A case study. J. Phys. Oceanogr., 33, 649676.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., L. K. Shay, A. J. Mariano, and P. G. Black, 2000: The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 14071429.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 41884207.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2010: Near-inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies. J. Phys. Oceanogr., 40, 13201337.

    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., R. Ferrari, and T. A. Mooring, 2010: Seasonal versus permanent thermocline warming by tropical cyclones. Geophys. Res. Lett., 37, L03602, doi:10.1029/2009GL041808.

    • Search Google Scholar
    • Export Citation
  • Jourdain, N. C., P. Marchesiello, C. E. Menkes, J. Lefevre, E. M. Vincent, M. Lengaigne, and F. Chauvin, 2011: Mesoscale simulation of tropical cyclones in the South Pacific: Climatology and interannual variability. J. Climate, 24, 325.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda. J. Atmos. Sci., 24, 182196.

  • Lloyd, I. D., and G. A. Vecchi, 2011: Observational evidence for oceanic controls on hurricane intensity. J. Climate, 24, 11381153.

  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. Lefevre, A. Vega, X. Couvelard, and C. Menkes, 2010: Coastal upwelling, circulation and heat balance around New Caledonia’s barrier reef. Mar. Pollut. Bull., 61, 432448.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., X. Capet, C. Menkes, and S. C. Kennan, 2011: Submesoscale dynamics in tropical instability waves. Ocean Modell., 39, 3146.

    • Search Google Scholar
    • Export Citation
  • McPhaden M. J., and Coauthors, 2008: Ocean-atmosphere interactions during Cyclone Nargis. Eos, Trans. Amer. Geophys. Union, 90, 53, doi:10.1029/2009EO070001.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2006: Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press, 249 pp.

  • Menkes, C. E. R., J. G. Vialard, S. C. Kennan, J. P. Boulanger, and G. V. Madec, 2006: A modeling study of the impact of tropical instability waves on the heat budget of the eastern equatorial Pacific. J. Phys. Oceanogr., 36, 847865.

    • Search Google Scholar
    • Export Citation
  • Pasquero, C., and K. Emanuel, 2008: Tropical cyclones and transient upper-ocean warming. J. Climate, 21, 149162.

  • Penven, P., L. Debreu, P. Marchesiello, and J. C. McWilliams, 2006: Evaluation and application of the ROMS 1-way embedding procedure to the central California upwelling system. Ocean Modell., 12, 157187.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175.

  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., J. Morzel, and P. P. Niiler, 2008: Warming of SST in the cool wake of a moving hurricane. J. Geophys. Res., 113, C07010, doi:10.1029/2007JC004393.

    • Search Google Scholar
    • Export Citation
  • Pudov, V. D., A. A. Varfolomeev, and K. N. Fedorov, 1979: Vertical structure of the wake of a typhoon in the upper ocean. Okeanologiya, 21, 142146.

    • Search Google Scholar
    • Export Citation
  • Samson, G., H. Giordani, G. Caniaux, and F. Roux, 2009: Numerical investigation of an oceanic resonant regime induced by hurricane winds. Ocean Dyn., 59, 565586.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. F. Price, J. B. Girton, and D. C. Webb, 2007: Highly resolved observations and simulations of the ocean response to a hurricane. Geophys. Res. Lett., 34, L13604, doi:10.1029/2007GL029679.

    • Search Google Scholar
    • Export Citation
  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651.

    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., and Coauthors, 2011: Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J. Climate, 24, 43684384.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., and E. W. Uhlhorn, 2008: Loop current response to Hurricanes Isidore and Lili. Mon. Wea. Rev., 136, 32483274.

  • Shay, L. K., R. L. Elsberry, and P. G. Black, 1989: Vertical structure of the ocean current response to a hurricane. J. Phys. Oceanogr., 19, 649669.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins, and R. L. Elsberry, 1992: Upper ocean response to Hurricane Gilbert. J. Geophys. Res., 97, 20 22720 248.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383.

  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., and M. Huber, 2007: Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447, 577580.

  • Sriver, R. L., and M. Huber, 2010: Modeled sensitivity of upper thermocline properties to tropical cyclone winds and possible feedbacks on the Hadley circulation. Geophys. Res. Lett., 37, L08704, doi:10.1029/2010GL042836.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., M. Huber, and J. Nusbaumer, 2008: Investigating tropical cyclone-climate feedbacks using the TRMM Microwave Imager and the Quick Scatterometer. Geochem. Geophys. Geosyst., 9, Q09V11, doi:10.1029/2007GC001842.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, C. E. Menkes, N. C. Jourdain, P. Marchesiello, and G. Madec, 2011: Interannual variability of the South Pacific convergence zone and implications for tropical cyclone genesis. Climate Dyn., 36, 18811896.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, G. Madec, J. Vialard, G. Samson, N. Jourdain, C. E. Menkes, and S. Jullien, 2012: Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J. Geophys. Res., 117, C02020, doi:10.1029/2011JC007396.

    • Search Google Scholar
    • Export Citation
  • Withee, G. W., and A. Johnson, 1976: Buoy observations during Hurricane Eloise (September 19 to October 11, 1975). U.S. Department of Commerce NOAA/NSTL Station Data Rep., 21 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 881 293 18
PDF Downloads 696 211 20